
optimises your technology

Virtual Tracer Tests:
Coupling CFD and
CREng to Simulate
WRRFs Unit Processes
Introducing OpenFOAM®

nel s on.m a r q ue s @ fs dy n a mi c s .p t ; bruno.s a nto s @ fs dy n a m i c s .p t

1st September 2019

1

mailto:nelson.marques@fsdynamics.pt
mailto:bruno.santos@fsdynamics.pt

optimises your technology

OpenFOAM®
What it is and how to get it

2

optimises your technology

1. What is OpenFOAM®?

2. Short history of OpenFOAM

3. Ecosystem around OpenFOAM

4. Operating Systems and Standards

5. What is blueCFD®-Core?

6. Installing blueCFD-Core

7. Overview of installed packages

8. Overview of installation directory

9. Getting started with the interface

Section Contents

3

optimises your technology

What is OpenFOAM®? (1/3)

• OpenFOAM® is essentially an open-source software package that is
primarily meant to be used as toolbox for applying the principles,
methods and modelling strategies conceived in the field of
Computational Fluid Dynamics.

• The acronym FOAM stands for "Field Operation and Manipulation".

• It is maintained and delivered by the OpenFOAM Foundation:
www.openfoam.org

• OPENFOAM and OpenCFD are registered trademarks of OpenCFD Ltd (ESI
Group) and also distribute their own builds: www.openfoam.com

• OpenFOAM as an open-source software package, is licensed under the
GNU General Public License v3 (GPLv3): www.gnu.org/licenses/gpl.html

4

http://www.openfoam.org/
http://www.openfoam.com/
http://www.gnu.org/licenses/gpl.html

optimises your technology

What is OpenFOAM®? (2/3)

• Users are free to use OpenFOAM software, which can be freely used and
modified by each user in any field (personal, academic or commercial),
without any licensing fees, as long as GPLv3 license terms are respected.

• The modifications to the source code only have to be made available to
whom the binary packages are provided.

• In many simulation scenarios, OpenFOAM is ready to be used after
installing.

• Nonetheless, not all modelling strategies are available out-of-the-box
and the user may have to code a new modelling strategy, or deploy one
already made available by the community that uses OpenFOAM.

5

optimises your technology

What is OpenFOAM®? (3/3)

a) Anthony Jameson; b) Milovan Péric; c) Brian Spalding; d) Donald Knuth; e) Cornelius Lanczos, 1893-1974; f) Robert MacCormack; g) Brian Launder;
h) Peter Lax; i) Jack Kilby, 1923-2005; j) John von Neumann, 1903-1957; k) Alan Turing, 1912-1954.

a

c
d

h

b

g

e

f

i
Courtesy of Texas Instruments

j k

6

optimises your technology

Short history of OpenFOAM® (1/3)

• The original FOAM software was created by Henry Weller in 1989.

• Development of FOAM was done in an academic environment until
2000, including collaborative development.

• FOAM was commercialized as a CFD source code toolbox between 2000
and 2004 by the company Nabla Ltd.

• After the closure of Nabla Ltd in 2004, FOAM was modified, improved
and released as open-source by OpenCFD on the 10th of December
2004, with the new name "OpenFOAM".

• The trade marks OPENFOAM and OPENCFD was registered ~2 years later,
to help deter any abuse.

7

optimises your technology

Short history of OpenFOAM® (2/3)

• OpenCFD was bought by SGI in 2011 and the OpenFOAM Foundation
was created at the same time.

• The Foundation was created to ensure the source code remains open-
source and the copyright is respected, independently of the trade mark.

• OpenCFD was later bought by ESI in 2012.

• In 2014, Henry Weller left OpenCFD/ESI and remains as director of the
Foundation.

• 2015-17: Development in OpenFOAM continues to evolve, done by those
collaborating with the Foundation.

• 2016-17: OpenCFD/ESI deliver their own development line too, with the
alias OpenFOAM+, integrating changes by the Foundation.

8

optimises your technology

Short history of OpenFOAM® (3/3)

• Although we have mostly mentioned Henry Weller as the original author,
there have been a lot of contributions from several people and
companies that have worked directly with him throughout
FOAM/OpenFOAM's life span.

• Contributions are welcome and guidelines are outlined here:

• openfoam.org/dev/how-to-contribute/

• www.openfoam.com/community/repository.php

• References:

• http://cfd.direct/openfoam/

• http://www.openfoam.com/news/

9

http://openfoam.org/dev/how-to-contribute/
http://www.openfoam.com/community/repository.php
http://cfd.direct/openfoam/
http://www.openfoam.com/news/

optimises your technology

Ecosystem around OpenFOAM® (1/3)

• The community that uses the technology mostly use this forum:

• www.cfd-online.com/Forums/openfoam/

• The unofficial wiki, driven by the community: openfoamwiki.net

• The main public open-source forks of OpenFOAM:

• foam-extend (foam-extend.org) is a community driven fork of
OpenFOAM, mostly developed by Wikki Ltd: wikki.co.uk

• Caelus-CML is another fork of OpenFOAM done by Applied CCM:
www.caelus-cml.com

10

http://www.cfd-online.com/Forums/openfoam/
http://openfoamwiki.net/
http://foam-extend.org/
http://wikki.co.uk/
http://www.caelus-cml.com/

optimises your technology

Ecosystem around OpenFOAM® (2/3)

• There are several variants of OpenFOAM, where most were created for
adding support into the source code for working in other Operating
Systems (Windows and Mac OS X).

• Complete list of forks and variants:
openfoamwiki.net/index.php/Forks_and_Variants

• List of available forks/variants for Windows:
http://openfoamwiki.net/index.php/Windows

• List of available forks/variants for Mac OS X:
openfoamwiki.net/index.php/Installation/Mac_OS

11

http://openfoamwiki.net/index.php/Forks_and_Variants
http://openfoamwiki.net/index.php/Windows
http://openfoamwiki.net/index.php/Installation/Mac_OS

optimises your technology

Ecosystem around OpenFOAM® (3/3)

• Major contributions done by the community as toolboxes:

• PyFoam is a Python based scripting toolkit, which enhances the
abilities for using OpenFOAM from the command line:
openfoamwiki.net/index.php/Contrib/PyFoam

• swak4Foam is a toolkit designed for users that don't know C++,
making it easier to use simple mathematical code in utilities,
boundary conditions and post-processing tools:
openfoamwiki.net/index.php/Contrib/swak4Foam

• All known community contributions independent of OpenFOAM:

• openfoamwiki.net/index.php/Contrib

• openfoamwiki.net/index.php/Extend-bazaar
12

openfoamwiki.net/index.php/Contrib/PyFoam
openfoamwiki.net/index.php/Contrib/swak4Foam
openfoamwiki.net/index.php/Contrib
openfoamwiki.net/index.php/Extend-bazaar

optimises your technology

Operating Systems and Standards (1/4)

• Before 1980, one of the most common operating system (OS) was Unix,
of which there were several variants, most incompatible with each other.

• In 1981 MS-DOS was released, which was completely incompatible with
Unix systems, but was easier to use.

• The first Mac OS was released in 1984, an alternative to all other
operating systems.

• Microsoft Windows 1.0 was released in 1985.

• In 1988 was published the first POSIX standard, in an effort to
standardize compatibility between operating systems, at least for those
akin to Unix.

• Linux was first released in 1991. Later on it was named GNU/Linux.
13

optimises your technology

Operating Systems and Standards (2/4)

• Mac OS X was released in 2001, which implements most of the POSIX
standard.

• The main detail that matters for OpenFOAM: an open-source CFD
toolbox should rely on open-source technology and open standards.

• The detail that matters to a lot of users:

• Can I use it on Windows or Mac OS X?

• What matters for making OpenFOAM work on most closed source OS':

• How to adapt the POSIX standard that is followed in OpenFOAM, to
the systems we need it working on.

MS-DOS, Microsoft Windows, Mac OS, Mac OS X, GNU/Linux and Unix are all registered trade marks of their respective owners.

14

optimises your technology

Operating Systems and Standards (3/4)

• The result were a few unofficial variants of OpenFOAM:

• For Windows, where POSIX is not supported, which requires a
considerable effort in adapting the source code, depending on the
approach.

• For Mac OS X, which requires some effort in adapting the source
code, since Mac OS X adopts most of the POSIX standard.

• Among these efforts, blueCFD was created in 2009, to improve upon
existing work of porting OpenFOAM for Windows.

• In November 2013, blueCFD was rebranded to blueCFD®-Core, as our
product line expanded.

15

optimises your technology

Operating Systems and Standards (4/4)

• On the other hand, started on January 2016, official installation packages
of OpenFOAM begun to appear that rely on Docker, a container strategy
for providing easy to install virtual instances of Linux machines within a
containment management software, namely Docker. Available packages:

• OpenFOAM Foundation: openfoam.org/download/4-1-macos/

• OpenCFD/ESI: openfoam.com/download/install-binary-windows.php

• Another container-like implementation is the Windows Subsystem for
Linux in Windows 10, which allows using Ubuntu within it. Instructions:

• OpenFOAM Foundation: openfoam.org/download/windows-10/

• OpenCFD/ESI: openfoam.com/download/install-windows-10.php

16

https://openfoam.org/download/4-1-macos/
http://openfoam.com/download/install-binary-windows.php
https://openfoam.org/download/windows-10/
http://openfoam.com/download/install-windows-10.php

optimises your technology

What is blueCFD®-Core? (1/3)

• An open source project that provides high quality builds of
OpenFOAM® for up-to-date Windows 7 to 10 64-bit, fully compilable on
Windows.

• Complete functionality with the original scripts of OpenFOAM on
Windows, by relying on MSys2.

• All features in OpenFOAM 4.x that require compiling, will build as
intended in blueCFD-Core 2016.

• Customized solvers and libraries can also be compiled directly with
OpenFOAM 4.x on Windows.

• Third-Party software is also provided, including: ParaView, Gnuplot,
GDB, Notepad2, Meld, Python, etc…

17

optimises your technology

What is blueCFD®-Core? (2/3)

• A Portable functionality, that allows copying the installed blueCFD-Core
into an USB drive and ready to be used in other Windows machines.

• A single User Guide that addresses all major features of blueCFD-Core.

• Provide the full source code of OpenFOAM (including Git history for
easy syncing and update), including the modifications done for making
it work on Windows.

References:

• http://bluecfd.github.io/Core/

• http://bluecfd.github.io/Core/ReleaseNotes/

18

http://bluecfd.github.io/Core/
http://bluecfd.github.io/Core/ReleaseNotes/

optimises your technology

What is blueCFD®-Core? (3/3)

Objectives:

• Bring OpenFOAM technology to Windows, enabling all features
available in GNU/Linux Distributions.

• Preserving full compatibility and functionality with the original source
code, with the minimal impact to the source code.

• Quality assurance tests, in order to ensure and document which
features are working in accordance with the official Linux distribution.

• Consolidating community efforts into a single project that ports
OpenFOAM for native execution on Windows.

19

optimises your technology

Installing blueCFD-Core (1/15)

In the provided USB should be the following file and folder:

To start the installer, double click on the file
blueCFD-Core-2016-2-win64-setup.exe

It’s also available online at http://bluecfd.github.io/Core/Downloads/

20

http://bluecfd.github.io/Core/Downloads/

optimises your technology

Installing blueCFD-Core (2/15)

Once the installer starts, it will show the following window:

Click on the “Next” button.

21

optimises your technology

Installing blueCFD-Core (3/15)

The next window provides the license information and the request for
agreement:

After accepting the agreement, click on the “Next” button.

22

optimises your technology

Installing blueCFD-Core (4/15)

In the next window, it asks where blueCFD-Core should be installed:

Notes in the next slide…

23

optimises your technology

Installing blueCFD-Core (5/15)

Notes on “Select Destination Location”:

• The standard location should work for most people, although keep in
mind that the installer will activate the ability to write files within
specific user sub-folders inside this folder.

• Alternatively, you can install in “C:\blueCFD-Core-2016” or in a
similar drive letter.

• Or if you prefer, you can install this only for your own personal area, by
closing the installer and running it manually from the command line,
like this:

blueCFD-Core-2016-2-win64-setup.exe /SINGLEUSER=1

24

optimises your technology

Installing blueCFD-Core (6/15)

Once the location is chosen, click on the “Next” button and it will ask what
type of installation to perform:

More details on the next slide…

25

optimises your technology

Installing blueCFD-Core (7/15)

The types of installation are essentially:

• “Full installation” – For installing everything.

• "Custom installation" – For choosing which features to install, for
example:

26

optimises your technology

Installing blueCFD-Core (8/15)

Once the choices have been made, click on the “Next” button, which will
allow choosing the Start Menu group where the blueCFD-Core shortcuts
should be placed:

27

optimises your technology

Installing blueCFD-Core (9/15)

After choosing the group name, click on the “Next” button, which lead to
the window with the following options:

Details in the next slide…

28

optimises your technology

Installing blueCFD-Core (10/15)

Notes regarding “Select Additional Tasks” (1/2):

• The desktop icon is useful specially on Windows 8, 8.1 and 10, due to
either the non-existence of a Start Menu (Windows 8) or because the
sub-folders are not longer displayed (Windows 10).

• Without these icons, it could get very complicated to use blueCFD-
Core on those versions of Windows.

• The option to "Add Notepad2 to the right-click on any file in Windows
Explorer" is useful for editing the OpenFOAM case files.

• This option to “Add MSys2 terminal to the right-click on any folder in
Windows Explorer” is also very useful.

29

optimises your technology

Installing blueCFD-Core (10/15)

Notes regarding “Select Additional Tasks” (2/2):

• The option to “Install MS-MPI 7.1 for global use” will install MS-MPI
directly into Windows’ system folders.

• The option to "enable write permissions" is necessary and advisable
when the user currently installing blueCFD-Core is able to perform
administrative installations.

• Needed when installing in the default folder: C:\Program Files

• If not enabled in this situation, namely to give the ability to write in
the main user folders “ofuser-4.x”, “msys64\home\ofuser”
and “msys64\etc”, will disrupt the conventional installation
process.

30

optimises your technology

Installing blueCFD-Core (11/15)

Once the choices have been made, click on the “Next” button. The final
window before the installation begins is shown:

Click on the “Install” button to proceed.

31

optimises your technology

Installing blueCFD-Core (12/15)

While it is installing blueCFD-Core, it should show the progress bar, as
exemplified here:

The progress bar will go forward …

32

optimises your technology

Installing blueCFD-Core (13/15)

When it reaches the end of the files to be installed, it will run the external
installers (MS-MPI), if selected. This will reset the progress bar for this
second progress stage:

33

optimises your technology

Installing blueCFD-Core (14/15)

One of the possible steps in this second progress stage is to install MS-MPI,
which will interactively ask you to follow its own installation steps.

The steps should be fairly simple:

1. Introduction.

2. Accept the license.

3. Select location.

4. Click on the “Install” button.

5. Wait a little while.

6. Click on the “Finish” button.

The control will then return to the blueCFD-Core installer.
34

optimises your technology

Installing blueCFD-Core (15/15)

Once the installation is complete, it will show the following window:

Once you click in the “Finish” button, blueCFD-Core should be installed
with the chosen features!

35

optimises your technology

Overview of installed packages (1/10)

The Start Menu, as shown on the right for
Windows 10, is the conventional way to access
installed applications in Windows. The
structure depends on each Windows version:

• On Windows 7, click on “All Programs” and
scroll down for blueCFD-Core-2016, which
provides a complete tree with branches.

• For Windows 8 to 10, it’s easier to use the
desktop icons as seen in the next slide, but
as shown to the right, it only shows a
summary branch that lists all shortcuts.

36

optimises your technology

Overview of installed packages (2/10)

On Windows 8 to 10, blueCFD-Core provides a few shortcuts in
your Windows Desktop, as shown on the right.

The first icon is the “blueCFD-Core 2016 (Start Menu)”, that
provides access to the contents that were shown on the previous
slide.

37

optimises your technology

Overview of installed packages (3/10)

Additional Shortcuts:

• blueCFD-Core folder – Shortcut that
leads to the folder where blueCFD-Core
is installed.

• blueCFD-Core terminal – Primary command based interface for
OpenFOAM, similar to how it works on Linux (using MSys2).

• Extended Start Menu – will go into the blueCFD-Core’s installation
folder to access additional documentation and low-level functionality.

38

optimises your technology

Overview of installed packages (4/10)

Double-clicking on “Extended Start Menu”, will go into:

39

This application copies the whole blueCFD-Core installation to a portable drive.

optimises your technology

Overview of installed packages (5/10)

CLI (Command Line Interface) folder:

• Gnuplot Shell – text-based command line
interaction for working with Gnuplot.

• Python 2 Shell (x86_64) – Shortcut to a CLI for
Python 2.7 (provided with MSys2).

• Python 3 Shell (x86_64) – Shortcut to a CLI for Python 3.5 (provided
with MSys2).

Note: These do not provide access to OpenFOAM on their own, i.e.
additional coding is needed.

40

optimises your technology

Overview of installed packages (6/10)

Documentation folder:

• blueCFD-Core Online User Guides – Link to
online User Guides page.

• blueCFD-Core Release Notes – Link to online page.

• OpenFOAM User Guide – One of the most important documents for
learning how to use OpenFOAM.

• Gnuplot – Folder with links and shortcuts for Gnuplot’s documentation.

• ParaView Guides – Folder with links and shortcuts for ParaView’s
documentation.

41

optimises your technology

Overview of installed packages (8/10)

Installation folder:

• System-wide install of MS-MPI 7.1 – MS-MPI
installer’s shortcut. Useful when not chosen
by default during blueCFD-Core’s installation.

• Uninstall blueCFD-Core 2016 – Uninstaller application link to remove
blueCFD-Core 2016.

• Note: The uninstaller will not delete any files or folders that have
been created during the normal use of blueCFD-Core.

42

optimises your technology

Overview of installed packages (9/10)

Settings folder:

• Local Drive Mode – Shortcuts for activating and
deactivating a virtual drive to the blueCFD-Core
installation folder.

• useful when re-building OpenFOAM from source code or building
custom source code.

• See wiki pages for more details: github.com/blueCFD/Core/wiki/

• MPI mode – Not entirely useful in blueCFD-Core 2016, but designed to
allow changing between MPI toolboxes, depending on those installed
on your system.

• Contact us if you need another version, email address is on the presentation cover.

43

https://github.com/blueCFD/Core/wiki/

optimises your technology

Overview of installed packages (10/10)

Web folder:

• Links to online websites which provide
information for the software provided with
blueCFD-Core. This is where most of the
remaining documentation can be found.

44

optimises your technology

Overview of installation directory (1/3)

Double-clicking on “blueCFD-Core folder”, will go into:

45

optimises your technology

Overview of installation directory (2/3)

In the main installation folder, the most important folders are:
• AddOns – Additional software, such as ParaView, Gnuplot, etc…
• msys64 – “Minimal System” (MSys2 64-bit), similar to a terminal

interface in a Linux Distribution.
• ofuser-of4 – Where your personal simulations and source code can be

placed.
• OpenFOAM-4.x – OpenFOAM’s source code, binaries, tutorials and

code documentation.
• shortcuts – Shortcuts for a portable installation.
• Start Menu – Shortcuts already described in the previous slides.
• ThirdParty-4.x – Third-party software that OpenFOAM needs but not

provided by MSys2.

46

optimises your technology

Overview of installation directory (3/3)

Important sub-folders:

• msys64\home\ofuser – Where the Msys2 shell environment will start
and where most personal files are stored.

• ofuser-of4\run – Where your personal simulations cases should be
placed.

• OpenFOAM-4.x:

• doc – Location for OpenFOAM’s documentation.

• tutorials – Location for the original copy of the OpenFOAM tutorial
case folders.

47

optimises your technology

Command Line Interface

48

The main interface available in blueCFD-Core is essentially the same that is
available in OpenFOAM: the Command Line Interface (CLI).

optimises your technology

Getting started with the interface (1/12)

The main interface available in blueCFD-Core is essentially the same that is
available in OpenFOAM: the Command Line Interface (CLI).

Interface on Linux Interface on Windows
49

optimises your technology

Getting started with the interface (2/12)

Commands for file management (1/4):

ls list directory contents

ls -1 same as above, but in a single column

ls -al formatted listing with hidden files

ll formatted listing, same as ls -l

cd dirname go to directory dirname

cd go to user home

cd .. go back one directory

pwd show current directory path

mkdir dirname create directory dirname

50

optimises your technology

Getting started with the interface (3/12)

Commands for file management (2/4):

rm filename delete file filename

rm -r dirname delete directory dirname

rm -f filename force delete file filename (CAUTION)

rm -rf dirname force delete directory dirname (CAUTION)

cp filename1 filename2

copy file filename1 to file filename2

cp -r dirname1 dirname2

copy directory dirname1 to directory dirname2

51

optimises your technology

Getting started with the interface (4/12)

Commands for file management (3/4):

mv filename1 filename2

rename or move file filename1 to file filename2

ln -s filename linkname

create symbolic link linkname to file filename

touch filename

create file filename or change times of file filename

less filename

interactively output the contents of file filename

52

optimises your technology

Getting started with the interface (5/12)

Commands for file management (4/4):

less filename output the contents of file filename

“q” for ending the interactive mode

head filename output the first 10 lines of file filename

tail filename output the last 10 lines of file filename

tail -f filename same as above, but updates continuously

53

optimises your technology

Getting started with the interface (6/12)

Commands for system information:

<command> --help

if available, shows the available help for <command>

date show the current date and time

whoami display the user name you are logged in as

uname -a show operating system kernel information

df show disk usage

du show directory space usage

echo envab

54

prints to screen value of system variable “envab”

optimises your technology

Getting started with the interface (7/12)

Commands for process management:

ps display your currently active processes

kill pid kill process with identification pid (CAUTION)

jobs lists stopped or background jobs;

bg resume a background job

fg brings the most recent job to foreground

fg n brings job n to the foreground

55

optimises your technology

Getting started with the interface (8/12)

Commands for searching files and content (1/2):

grep pattern filename

search for pattern in filename

grep -r pattern dirname

search recursively for pattern in dirname

command | grep pattern

search for pattern in the output of command

find dir -name pattern

search for pattern in a directory hierarchy

56

optimises your technology

Getting started with the interface (9/12)

Commands for searching files and content (2/2):

find dir -name pattern | grep word

search for pattern in a directory hierarchy and search
within files that have been found for the word inside them

which command locate a command command

where command show possible locations the command name

57

optimises your technology

Getting started with the interface (10/12)

Text editors:

vi file use text editor vi to edit file file

nano file uses text editor notepad2 to edit file file

(nano is available for MSys2 and is easier to use than vi, but it wasn’t installed
with blueCFD-Core)

Other text editors of note but not installed in blueCFD-Core:

• Notepad++ notepad-plus-plus.org

• Geany geany.org

• Etc your favorite

58

http://notepad-plus-plus.org/
https://geany.org/

optimises your technology

Getting started with the interface (11/12)

Command Line Navigation:
Ctrl+a moves cursor to beginning of line

Ctrl+e moves cursor to end of line

Ctrl+→ moves cursor to beginning of next word in the line

Ctrl+← moves cursor to beginning of previous word in the line

Ctrl+k deletes words until end of line from current cursor position

Ctrl+u deletes words until the start of line from current cursor position

Ctrl+y pastes the words that were deleted with Ctrl+k/u

Alt+backspace deletes previous word in line from current cursor position

Alt+F2 Starts a new terminal window

59

optimises your technology

Getting started with the interface (12/12)

Additional information about shells, commands and procedures on Linux
can be obtained through:

• The Linux Documentation Project: www.tldp.org

• Linux Command website: linuxcommand.org

In the Linux Documentation Project website, we can also see a general
introduction on Linux:

www.tldp.org/LDP/intro-linux/html/index.html

60

http://www.tldp.org/
http://linuxcommand.org/
http://www.tldp.org/LDP/intro-linux/html/index.html

optimises your technology

OpenFOAM®
Bird’s-eye view

61

optimises your technology

1. OpenFOAM Structure

2. Example Case Overview

3. Simulation Case Structure

4. Mesh Generation

5. Preprocessing

• Model Properties

• Boundary conditions

• fvSolution and fvSchemes

6. Simulation

7. Post-processing

62

Section Contents

optimises your technology
63

OpenFOAM Structure (1/3)

Important Environment Variables in OpenFOAM

$WM_PROJECT_DIR path to the OpenFOAM installation

$WM_PROJECT_USER_DIR user directory

$FOAM_TUTORIALS tutorials

$FOAM_SRC source code directory of OpenFOAM libraries

$FOAM_APP source code directory of OpenFOAM applications

$FOAM_APPBIN directory with the compiled OpenFOAM applications

$FOAM_USER_APPBIN directory with the OpenFOAM applications created by the user

$FOAM_LIBBIN directory with the compiled OpenFOAM libraries

$FOAM_USER_LIBBIN directory with the OpenFOAM libraries created by the user

$FOAM_RUN directory where the user can put his/her cases

echo variable
will show you the contents of environment variable, example:

echo $WM_PROJECT_DIR

optimises your technology
64

OpenFOAM Structure (2/3)

Important Shell-Aliases in OpenFOAM

foam cd $WM_PROJECT_DIR

app cd $FOAM_APP

sol cd $FOAM_SOLVERS

tut cd $FOAM_TUTORIALS

util cd $FOAM_UTILITIES

src cd $FOAM_SRC/$WM_PROJECT

lib cd $FOAM_LIBBIN

run cd $FOAM_RUN

src cd $FOAM_SRC

wmSet . $WM_PROJECT_DIR/etc/bashrc

wmUnset . $WM_PROJECT_DIR/etc/config/unset.sh

optimises your technology
65

OpenFOAM Structure (3/3)

OpenFOAM’s main folder structure:
• applications – source code for…

• solvers – actual flow solvers

• test – core function testing

• utilities –utilities (i.e. everything else)

• bin – auxiliary scripts for using OpenFOAM

• doc –where the documentation is located

• etc – scripts for support files (shell environment, etc…)

• platforms – where the built binaries are placed

• src – the source code of the libraries

• tutorials – the tutorial cases

• wmake – script infrastructure for building OpenFOAM

optimises your technology
66

Example Case Overview (1/4)

• Case name: halfParshall
• Boundary conditions:

• Inlet: 375 kg/s
• Bottom floor and side wall: no-slip
• Outlet surfaces: pressure outlet
• Symmetry plane surface: symmetry

• Fluid properties:
• Water:

• Density: 999 kg/m3

• Dynamic Viscosity: 1.15E-3 Pa.s
• Air:

• Density: 1.18 kg/m3

• Dynamic Viscosity: 1.855E-5 Pa.s

optimises your technology
67

Example Case Overview (2/4)

• Solver type: VOF (volume of fluid)
• Time domain: transient
• Geometry (1/2):

“top” – pressure outlet

“symmetry”

“outlet” – pressure outlet

optimises your technology
68

Example Case Overview (3/4)

• Geometry (2/2):

“sideWall” – no-slip condition

“bottomWall” – no-slip condition

“backWall” – no-slip condition

“inlet” – mass flow inlet

“outlet” – pressure outlet

optimises your technology
69

Example Case Overview (4/4)

• Objective:

optimises your technology
70

Simulation Case Structure (1/6)

The case definition is clear. Now what?

• We select the solver which suits the case characterization.

• On this case: interFoam

• Search a tutorial case that uses that same solver, either from the
default tutorial collection ($FOAM_TUTORIALS) or through a web
search, and copy it across.

• Start adjusting settings (boundary conditions, initialization and
numerical parameters) to suit our needs.

Naturally, for meshing to be done, the CAD has to be available as well.

optimises your technology
71

Simulation Case Structure (2/6)

Folder structure in OpenFOAM for our case:

• halfParshall

• 0.orig – BC’s and initialization

• U – velocity field

• p – pressure field

• etc…

• constant – e.g. physical properties

• polymesh – polyhedral mesh files

• triSurface – geometrical models

• system – numerics and run-time control

• time directories – examples: 0, 0.1, 1, 2, 3 and so on.

optimises your technology
72

Simulation Case Structure (3/6)

halfParshall/0.orig:

• U – velocity field

• p_rgh – pressure field

• alpha.water – phase fraction field

• 1 = 100% water

• 0 = 100% not water (air in our case)

• epsilon – turbulent dissipation rate field

• k – turbulent kinetic energy field

• nut – turbulent dynamic viscosity field

Requirement before running the solver:

cp -r 0.orig 0

optimises your technology
73

Simulation Case Structure (4/6)

halfParshall/constant:

• g – gravity configuration (acceleration vector)

• transportProperties – physical properties of the fluids

• turbulenceProperties – turbulence model type: RAS or
LES and respective configuration

• polyMesh

• all other files are respective to the mesh, i.e.
automatically created, including:

• boundary – geometrical boundary conditions

• triSurface

• halfParshall.org.stl – original geometrical model, in STL format

optimises your technology
74

Simulation Case Structure (5/6)

halfParshall/system – essential configuration files:
• controlDict – runtime controls (start/stop time, etc...)
• fvSchemes –discretization schemes
• fvSolution – linear equation solvers and algorithms

Application-specific files:

• blockMeshDict – dictionary file for blockMesh
• changeDictionaryDict – to manipulate dictionary files
• createPatchDict – to create/remove/manipulate patches
• decomposeParDict – subdomain decomposition
• extrudeMeshDict – for extruding the mesh
• setFieldsDict – for manipulating the fields
• snappyHexMeshDict – dictionary for snappyHexMesh
• surfaceFeatureExtractDict – for calculating feature edges

optimises your technology
75

Simulation Case Structure (6/6)

halfParshall – files in the case’s root folder:

• Scripts for setting up and running the case:

• Allrun – will run all steps, also calls Allrun.pre

• Allrun.pre – will preprocess and generate the mesh

• Scripts for resetting the case to the original state:

• Allclean – will reset (clean up) the whole case

• Allclean.fields – will only remove the time snapshots

These scripts are manually created, nonetheless several examples for these files
are available in OpenFOAM’s “tutorials” folder.

optimises your technology
76

Mesh Generation (1/19)
Translate STL Background Mesh Extrude Mesh Extract Feature Edges

Translate Mesh Reconstruct snappyHexMesh Decompose

I II III IV

VVIVIIVIII

optimises your technology
77

Mesh Generation (2/19)

Meshing steps overview – Contents (nano it) of the Allrun.pre script (1/2):

runApplication surfaceTransformPoints -translate '(-4.25 0.687 -0.55)' \

constant/triSurface/halfParshall.org.stl \

constant/triSurface/halfParshall.stl

runApplication blockMesh

runApplication extrudeMesh

runApplication surfaceFeatureExtract

echo "decompositionMethod scotch;" > system/decomposeParDict.method

runApplication -s 1 decomposePar

echo "decompositionMethod ptscotch;" > system/decomposeParDict.method

I

II, III, IV

V

optimises your technology
78

Mesh Generation (3/19)

Meshing steps overview – Contents of the Allrun.pre script (2/2):

runParallel snappyHexMesh -overwrite

runApplication reconstructParMesh -constant

runApplication createPatch –overwrite

runApplication transformPoints -translate '(4.25 -0.687 0.55)'

runApplication checkMesh -constant

runApplication changeDictionary -enableFunctionEntries

VI

VII

VIII

optimises your technology
79

Mesh Generation (4/19)

Meaning of each step (1/5):

• runApplication and runParallel – these are auxiliary script functions, for
logging the execution of the application.

• surfaceTransformPoints – used for centring the geometry onto the
world referential.

• blockMesh – generates the base mesh, which wraps our geometry
within it, acting as a bounding box. Requires the file
“system/blockMeshDict”.

• extrudeMesh – in our case, we use it to add one additional cell layer
around the original base mesh, for improving the wrapping around our
geometry. Requires the file “system/extrudeMeshDict”.

optimises your technology
80

Mesh Generation (5/19)

Meaning of each step (2/5):

• surfaceFeatureExtract – will calculate the feature edges on our STL file.
Requires these files:

• “system/surfaceFeatureExtractDict”

• “constant/triSurface/halfParshall.stl”

• decomposePar – will decompose our existing mesh so far into 4
subdomains, so that we can mesh with 4 processes in parallel. Requires
the file “system/decomposeParDict”.

• The option “-s 1” is for appending the suffix “.1” to the log file
name, because decomposePar will be used a second time later on.

optimises your technology
81

Mesh Generation (6/19)

Meaning of each step (3/5):

• snappyHexMesh – this is the main mesh generator we will use, which
takes the base mesh we created and it will:

• refine the mesh accordingly to our settings;

• remove the cells that don’t matter from the mesh, in this case, the
cells that are outside of our geometry;

• morph and cut (i.e. snap) the mesh’s surface onto the surfaces of
our geometry.

All of the above settings are defined in the file
“system/snappyHexMeshDict”.

optimises your technology
82

Mesh Generation (7/19)

Meaning of each step (4/5):

• reconstructParMesh – this will reconstruct the resulting 4 subdomain
meshes into a single mesh.

• createPatch – it will clean up the list of patches in our mesh, because
the original patches from the base mesh would otherwise remain
present, with 0 faces assigned.

• transformPoints – used in our case for moving the whole mesh back
into the original position of the original geometry.

• checkMesh – used for keeping a record of the characteristics of the
mesh, including any diagnosed flaws.

optimises your technology
83

Mesh Generation (8/19)

Meaning of each step (5/5):

• changeDictionary – in our case we use it for changing the type of
surface boundary we want for each patch, namely if each surface is a
“patch”, “wall” or “symmetry”.

• The 2 commands that use echo are for defining the decomposition
method to be used. This is because:

• the “scotch” method is designed to work well in serial mode;

• the “ptscotch” method is designed to work well in parallel mode.

• The file “system/decomposeParDict.method” is used by the main
dictionary file “system/decomposeParDict”.

optimises your technology
84

Mesh Generation (9/19)

Seeing the mesh (1/5) - mesh done with blockMesh:

As shown on the right, it is a
somewhat tight bounding box
around our geometry, which is
also why we refer to this as the
“background mesh”.

optimises your technology
85

Mesh Generation (10/19)

Seeing the mesh (2/5) - the extruded mesh:

This is a detail view of the inside
of the mesh after the extrusion is
done. This will make it easier for
snappyHexMesh to see the
geometry.

optimises your technology
86

Mesh Generation (11/19)

Seeing the mesh (3/5) – 1st step of snappyHexMesh:

This is the result of the
castellation step, where it:

1. Refines the mesh where
asked to.

2. Removes the cells that
are irrelevant for our final
mesh.

optimises your technology
87

Mesh Generation (12/19)

Seeing the mesh (4/5) – 2nd step:

This is the result of the snap
step, where it:

1. Cuts cells that overlap the
geometry.

2. Morphs (snaps) the mesh
onto the surface.

optimises your technology
88

Mesh Generation (13/19)

Seeing the mesh (5/5) – refinement detail:

This is why we needed more
refinement near the outlet.

optimises your technology
89

Mesh Generation (14/19)

Note: This header is common to all of OpenFOAM’s dictionary files:

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant/polyMesh";

object blockMeshDict;

}

This is part of OpenFOAM’s open file format standard, so that special data
readers aren’t needed for human manipulation.

optimises your technology
90

Mesh Generation (15/19)

Highlights of blockMeshDict:
convertToMeters 1;

vertices

(

(-5.75 -0.686883 -0.65)

(5.75 -0.686883 -0.65)

(5.75 0.687 -0.65)

(-5.75 0.687 -0.65)

(-5.75 -0.686883 0.65)

(5.75 -0.686883 0.65)

(5.75 0.687 0.65)

(-5.75 0.687 0.65)

);

blocks

(

hex (0 1 2 3 4 5 6 7) (115 14 13) simpleGrading (1 1 1)

);

patches

(

patch maxX

((1 2 6 5))

patch minX

((0 4 7 3))

patch maxY

((3 7 6 2))

patch minY

((1 5 4 0))

patch maxZ

((4 5 6 7))

patch minZ

((0 3 2 1))

);

optimises your technology
91

Mesh Generation (16/19)

Highlights of snappyHexMeshDict (1/4):
// Which of the steps to run

castellatedMesh true;

snap true;

addLayers false;

geometry

{

"halfParshall.stl"

{

type triSurfaceMesh;

regions

{

backWall

{

name backWall;

}

[…]

[…]

top

{

name top;

}

}

}

refinementBox

{

type searchableBox;

min (-4.35 -1 -0.30);

max (-4.20 1 -0.15);

}

};

optimises your technology
92

Mesh Generation (17/19)

Highlights of snappyHexMeshDict (2/4):
// Settings for the castellatedMesh generation.

castellatedMeshControls

{

[…]

features

({

file "halfParshall.eMesh";

level 0;

});

refinementSurfaces

{

"halfParshall.stl"

{

level (0 0);

[…]

[…]

regions

{

backWall

{

level (0 0);

}

[…]

top

{

level (0 0);

}

}

}

}

[…]

optimises your technology
93

Mesh Generation (18/19)

Highlights of snappyHexMeshDict (3/4):
[…]

refinementRegions

{

refinementBox

{

mode inside;

levels ((1e-15 2));

}

}

locationInMesh (-1.212134e+000 8.290353e-003 -4.588275e-002);

}

//end of castellatedMeshControls

optimises your technology
94

Mesh Generation (19/19)

Highlights of snappyHexMeshDict (4/4):

// Settings for the snapping.

snapControls

{

nSmoothPatch 3;

tolerance 1.0;

nSolveIter 30;

nRelaxIter 5;

}

optimises your technology
95

Preprocessing (1/9)

Model Properties (1/2) – In file constant/transportProperties:

transportModel Newtonian;

phases (water air);

water

{

transportModel Newtonian;

nu nu [0 2 -1 0 0 0 0] 1.131131e-006;

rho rho [1 -3 0 0 0 0 0] 9.990000e+002;

mu mu [1 -1 -1 0 0 0 0] 1.130000e-003;

}

air

{

transportModel Newtonian;

nu nu [0 2 -1 0 0 0 0] 1.572e-05;

rho rho [1 -3 0 0 0 0 0] 1.18;

mu mu [1 -1 -1 0 0 0 0] 1.855e-05;

}

sigma sigma [1 0 -2 0 0 0 0] 0;

optimises your technology
96

Preprocessing (2/9)

Model Properties (2/2) – Where:

• nu – kinematic viscosity (m2/s)

• mu – dynamic viscosity (kg.m/s)

• rho - volumetric mass density (kg/m3)

• sigma - surface tension (kg/s2 or N/m)

• phases – the list of named phases present in the domain.

• The names do not strictly define the fluid their representing, they
are only for identification purposes.

optimises your technology
97

Preprocessing (3/9)

Boundary Conditions (1/2) – In a nutshell:

• 6 field files: U, alpha.water, epsilon, k, nut, p_rgh

• 4 major groups of boundary conditions per field:

• Inlet – assigned to the “inlet” surface

• Outlet – assigned to the “outlet” and “top” surfaces

• Wall – assigned to the “backWall”, “bottomWall”, “sideWall” surfaces

• Symmetry – assigned to the “symmetry” surface

optimises your technology
98

Preprocessing (4/9)

Boundary Conditions (2/2) – For example, U field file:

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0.0 0.0 0.0);

boundaryField

{

backWall

{

type fixedValue;

value uniform (0.0 0.0 0.0);

}

…

inlet

{

type flowRateInletVelocity;

massFlowRate 375;

rho rho;

rhoInlet 999.0;

}

optimises your technology
99

Preprocessing (5/9)

In the file system/fvSolution (1/3):

This dictionary file was designed to handle the settings for the linear
equation solvers and the algorithms to be used by a solver application, e.g.
interFoam.

Starting with the linear equation solvers, these are configured inside block
list:

solvers

{

…

}

The next few slides show one example.

optimises your technology
100

Preprocessing (6/9)

In the file system/fvSolution (2/3):

For configuring the linear equation solvers for the fields that start with
“alpha.water”, the example case we are using has the following settings:

"alpha.water.*"

{

nAlphaCorr 2;

nAlphaSubCycles 1;

cAlpha 1;

MULESCorr yes;

nLimiterIter 3;

solver smoothSolver;

smoother symGaussSeidel;

tolerance 1e-8;

relTol 0;

}

optimises your technology
101

Preprocessing (7/9)

In the file system/fvSolution (3/3):

Regarding the algorithm, interFoam uses PIMPLE, defined at the same
levels as “solvers”:

solvers

{

…

}

PIMPLE

{

momentumPredictor no;

nOuterCorrectors 1;

nCorrectors 3;

nNonOrthogonalCorrectors 1;

}

optimises your technology
102

Preprocessing (8/9)

Finite volume discretization schemes in system/fvSchemes (1/2):

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default corrected;

}

fluxRequired

{

default no;

p_rgh;

pcorr;

alpha.water;

}

ddtSchemes

{

default Euler;

}

gradSchemes

{

default Gauss linear;

}

[…] (divSchemes in next slide)

laplacianSchemes

{

default Gauss linear corrected;

}

optimises your technology
103

Preprocessing (9/9)

Finite volume discretization schemes in system/fvSchemes (1/2):

These usually come after gradSchemes:

divSchemes

{

default none;

div(rhoPhi,U) Gauss upwind;

div(phi,alpha) Gauss upwind;

div(phirb,alpha) Gauss upwind;

div(phi,k) Gauss upwind;

div(phi,epsilon) Gauss upwind;

div((muEff*dev(T(grad(U))))) Gauss linear;

}

optimises your technology
104

Simulation (1/4)

Simulation steps overview – as simple as looking into the contents of the
Allrun script:

./Allrun.pre

cp -r 0.orig 0

echo "decompositionMethod scotch;" > system/decomposeParDict.method

runApplication -s 2 decomposePar -force

runParallel renumberMesh 4 -overwrite

#runParallel setFields 4

runParallel interFoam 4

runApplication reconstructPar

In the next slides we will see what each does…

optimises your technology
105

Simulation (2/4)

Simulation steps (1/3):

• Allrun.pre – We learned about it in the meshing section.

• cp -r 0.orig 0 – Deploy initial fields for the time step “0”.

• decomposePar -force – This will re-decompose our mesh, along
with the fields. We could have used the option “-fields”, but we want
to make sure that the mesh is well balanced, which might not be the
case when snappyHexMesh is finished.

• renumberMesh – This application is meant to optimize how the cells
(and respective data) in the mesh are organized, so that the equation
matrices have a diagonal bandwidth as small as possible. Performance
improvements can reach 30% less runtime.

optimises your technology
106

Simulation (3/4)

Simulation steps (2/3):

• Allrun.pre – We learned about it in the meshing section.

• setFields – Not used in our example case, but this is one of the
reasons as to why we need the folder “0.orig” to be created
separately, since running it will change the field files in the “0” folder.

• interFoam – This is the solver used in this case. Quoting the source:

Solver for 2 incompressible, isothermal immiscible fluids using a VOF (volume of
fluid) phase-fraction based interface capturing approach.

The momentum and other fluid properties are of the "mixture" and a single
momentum equation is solved.

Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.

optimises your technology
107

Simulation (4/4)

Simulation steps (3/3):

• reconstructPar – For reconstructing the time steps that were
generated while running in parallel.

Beyond this, comes the need for monitoring the output of the log file…
which will seem fairly cryptic at first glance. For example:

GAMG: Solving for p_rgh, Initial residual = 1, Final residual =

0.020995727, No Iterations 4

Not to worry, there is more than one way to plot the values that matter to
us.

optimises your technology
108

Post-processing (1/3)

The easiest post-processing is done by using ParaView, which can be
launched with the script:

paraFoam

ParaView will start and
show on the left side of the
window, something similar
to the one on the right.
Clicking on the “Apply”
button will load the case.

optimises your technology
109

Post-processing (2/3)

The mouse controls with the 3D view are similar to most 3D CAD software,
although the actions done by each button may be switched.

These are the time controls:

And this is an example on
how to change between
fields to be rendered.

optimises your technology
110

Post-processing (3/3)

By choosing “alpha.water” and turning on the legend, we can see the
result below:

The legend can be
moved with the mouse.

optimises your technology

Thank you!

Any questions?

optimises your technology

Getting Started with OpenFOAM

nel s on.m a r q ue s @ fs dy n a mi c s .p t ; bruno.s a nto s @ fs dy n a m i c s .p t

1st September 2019

Virtual Tracer Tests:
Coupling CFD and
CREng to Simulate
WRRFs Unit Processes

mailto:nelson.marques@fsdynamics.pt
mailto:bruno.santos@fsdynamics.pt

optimises your technology

Pre-processing
Meshing

113

optimises your technology

1. Available Meshers

2. blockMesh

3. snappyHexMesh

• Surface preparation and import

• Background mesh

• Mesh parameters

• Visualisation

114

Section Contents

optimises your technology
115

Available Meshers (1/4)

Meshers available from within OpenFOAM:

• blockMesh: openfoamwiki.net/index.php/BlockMesh

• snappyHexMesh: openfoamwiki.net/index.php/SnappyHexMesh

• foamyHexMesh: openfoam.org/release/2-3-0/foamyhexmesh/

• foamyQuadMesh: 2D version of foamyHexMesh.

• polyDualMesh: this is mainly a mesh conversion tool, aimed at
converting tetrahedral meshes into polyhedral meshes.

http://openfoamwiki.net/index.php/BlockMesh
http://openfoamwiki.net/index.php/SnappyHexMesh
https://openfoam.org/release/2-3-0/foamyhexmesh/

optimises your technology
116

Available Meshers (2/4)

Known open-source GUIs for OpenFOAM’s meshers:

• SwiftBlock: openfoamwiki.net/index.php/Contrib/SwiftBlock

• SwiftSnap: openfoamwiki.net/index.php/Contrib/SwiftSnap

• Helyx-OS: engys.github.io/HELYX-OS/

http://openfoamwiki.net/index.php/Contrib/SwiftBlock
http://openfoamwiki.net/index.php/Contrib/SwiftSnap
http://engys.github.io/HELYX-OS/

optimises your technology
117

Available Meshers (3/4)

Other open-source meshers compatible with OpenFOAM:

• enGrid: github.com/enGits/engrid/wiki

• cfMesh: sourceforge.net/projects/cfmesh/

• Netgen: sourceforge.net/projects/netgen-mesher/

• TetGen: wias-berlin.de/software/tetgen/

• Salome: www.salome-platform.org

• Tutorials can be found here: www.caelinux.org/wiki

• terrainBlockMesher: github.com/jonasIWES/terrainBlockMesher

• extBlockMesh: www.etudes-ng.net/home/development/extBlockMesh

https://github.com/enGits/engrid/wiki
https://sourceforge.net/projects/cfmesh/
https://sourceforge.net/projects/netgen-mesher/
http://wias-berlin.de/software/tetgen/
http://www.salome-platform.org/
http://www.caelinux.org/wiki/index.php/Main_Page
https://github.com/jonasIWES/terrainBlockMesher
http://www.etudes-ng.net/home/development/extBlockMesh

optimises your technology
118

Available Meshers (4/4)

Commercial meshers compatible with OpenFOAM:

• ANSA: www.beta-cae.com/ansa.htm

• Pointwise: www.pointwise.com

• And most of the ones presented here:
openfoamwiki.net/index.php/GUI

Commercial meshers, not 100% compatible:

• Fluent and related ANSYS software, such as T-Grid

• Star-CD and Star-CCM+ by CD-adapco

http://www.beta-cae.com/ansa.htm
http://www.pointwise.com/
http://openfoamwiki.net/index.php/GUI

optimises your technology
119

blockMesh (1/13)

Designed for creating a mesh from various sets of blocks, this mesher is
very powerful but can quickly get very complicated to use.

We will showcase its basic use with a simple backward-facing step:

• Length of initial channel section: 3.8 H

• Height of the initial channel section: 4 H

• Length of the final channel: 30 H

• Total length: 33.8 H

• Height of the step: H

• Which implies that the height of the final channel section is: 5 H

• The characteristic height H to be used will be 1 meter.

optimises your technology
120

blockMesh (2/13)

optimises your technology
121

blockMesh (3/13)

Why all those reference points?

Because we will create 3 blocks, namely:

• ADEB

• EFGI

• BEIC

Even though the geometry is defined solely in 2D, OpenFOAM needs the
3rd Dimension just the same, which means that the list of points will be
doubled, one for the front, another for the back.

optimises your technology
122

blockMesh (4/13)

To make it easier to create these blocks, we use a few strategies:

• Define the reference X positions for: AD, BEF and CIG
• Define the reference Y positions for: ABC, DEI and FG
• A list of the indexes associated to each point in the front, as well as a

list of the indexes for the points in the back.

X

Y

optimises your technology
123

blockMesh (5/13)

In practice, our “blockMeshDict” will look like this:
convertToMeters 1.0;

// positions ABCDEFGI

ADx 0.0;

BEFx 3.8;

CIGx 33.8;

ABCy 5.0;

DEIy 1.0;

FGy 0.0;

Aa 0;

Ba 1;

Ca 2;

Da 3;

Ea 4;

…

…

Fa 5;

Ga 6;

Ia 7;

Ab 8;

Bb 9;

Cb 10;

Db 11;

Eb 12;

Fb 13;

Gb 14;

Ib 15;

X

Y

optimises your technology

…

//Z=0.1

($ADx $ABCy 0.1) //A, 8

($BEFx $ABCy 0.1) //B, 9

($CIGx $ABCy 0.1) //C, 10

($ADx $DEIy 0.1) //D, 11

($BEFx $DEIy 0.1) //E, 12

($BEFx $FGy 0.1) //F, 13

($CIGx $FGy 0.1) //G, 14

($CIGx $DEIy 0.1) //I, 15

);

124

blockMesh (6/13)

List of vertices (front & back):

vertices

(

//Z=0

($ADx $ABCy 0.0) //A, 0

($BEFx $ABCy 0.0) //B, 1

($CIGx $ABCy 0.0) //C, 2

($ADx $DEIy 0.0) //D, 3

($BEFx $DEIy 0.0) //E, 4

($BEFx $FGy 0.0) //F, 5

($CIGx $FGy 0.0) //G, 6

($CIGx $DEIy 0.0) //I, 7

…

optimises your technology
125

blockMesh (7/13)
blocks

(

//ADEB

hex ($Aa $Da $Ea $Ba $Ab $Db $Eb $Bb) (1 1 1) simpleGrading (1 1 1)

//EFGI

hex ($Ea $Fa $Ga $Ia $Eb $Fb $Gb $Ib) (1 1 1) simpleGrading (1 1 1)

//BEIC

hex ($Ba $Ea $Ia $Ca $Bb $Eb $Ib $Cb) (1 1 1) simpleGrading (1 1 1)

);

optimises your technology
126

blockMesh (8/13)

Geometrical
boundaries
(1/2):

boundary

(

inlet

{

type patch;

faces

(

($Aa $Da $Db $Ab)

);

}

outlet

{

type patch;

faces

(

($Ca $Ia $Ib $Cb)

($Ia $Ga $Gb $Ib)

);

}

upperWall

{

type wall;

faces

(

($Aa $Ba $Bb $Ab)

($Ba $Ca $Cb $Bb)

);

}

lowerWall

{

type wall;

faces

(

($Da $Ea $Eb $Db)

($Ea $Fa $Fb $Eb)

($Fa $Ga $Gb $Fb)

);

}

optimises your technology
127

blockMesh (9/13)

Geometrical boundaries (2/2):

Reminder: the vertices should be
defined counter-clockwise and in
the same order for the front and
back.

frontAndBack

{

type empty;

faces

(

($Aa $Da $Ea $Ba)

($Ba $Ea $Ia $Ca)

($Ea $Fa $Ga $Ia)

($Ab $Db $Eb $Bb)

($Bb $Eb $Ib $Cb)

($Eb $Fb $Gb $Ib)

);

}

);

optimises your technology
128

blockMesh (10/13)

Last but not least, the “edges” list and “mergePatchPairs”:

edges

(

);

mergePatchPairs

(

);

Where:
• edges: for providing a list of edge modifiers, e.g.:

arc 0 5 (0.469846 0.17101 -0.5)

• mergePatchPairs: for merging patches, e.g. if we
had two geometrical boundaries that we wanted
to stitch together.

optimises your technology
129

blockMesh (11/13)

Workflow:
1. We use a tutorial case as a basis, for example

“basic/potentialFoam/pitzDaily”.
2. Modify the file “system/blockMeshDict”.
3. Run blockMesh.
4. If all goes well, run paraFoam.
5. What we will see in ParaView is something like this:

optimises your technology
130

blockMesh (12/13)

Edit the “blockMeshDict” and changing the block list to this:

blocks

(

//ADEB

hex ($Aa $Da $Ea $Ba $Ab $Db $Eb $Bb) (20 19 1) simpleGrading (1 1 1)

//EFGI

hex ($Ea $Fa $Ga $Ia $Eb $Fb $Gb $Ib) (5 150 1) simpleGrading (1 1 1)

//BEIC

hex ($Ba $Ea $Ia $Ca $Bb $Eb $Ib $Cb) (20 150 1) simpleGrading (1 1 1)

);

Will result in this:

optimises your technology
131

blockMesh (13/13)

The grading over each direction depends in the order of the vertices:

hex ($Ba $Ea $Ia $Ca $Bb $Eb $Ib $Cb) (20 150 1)…

B → E
E → I

optimises your technology
132

snappyHexMesh (1/49)

This mesher acts as a chiseller, given it will work on an initial mesh:

1. Castellation:

2. Snapping:

• The cells near the surfaces of the geometrical models will be cut
and/or snapped onto those surfaces.

3. Layer addition:

• The internal mesh near the surfaces is compacted and prismatic
cells are added between the internal mesh and the surfaces.

1. Refines the selected edges, surfaces and volumes.
All of the selected cells with be divided evenly.

2. Remove unwanted cells, namely the ones inside
or outside of the provided geometrical models.

optimises your technology
133

snappyHexMesh (2/49)

Examples of each stage (1/2):

Initial (background) mesh Castellated mesh

optimises your technology
134

snappyHexMesh (3/49)

Examples of each stage (2/2):

Snapped mesh Before and after layer
addition (section-cut view)

optimises your technology
135

snappyHexMesh (4/49)

Surface preparation and import (1/6):

1. Fix the geometry before exporting:

1. Keep it simple

2. Remember which side you will mesh

3. If it is too complex, try something simpler first

4. Know your physics and solvers

5. Know the format you are exporting to

6. Know your units (preferably SI)

7. Know the location of your geometry

2. Export the geometry to a suitable format

3. Check the resulting discretized geometry

optimises your technology
136

snappyHexMesh (5/49)

Surface preparation and import (2/6):

• OpenFOAM mostly deals with geometric models in STL and Wavefront
OBJ files, where both must already be tessellated and preferably in
ASCII format.

• Both file formats can handle the identification of separate groups of
triangles as patches. For example, in STL, this means that there can be
several solids in a single STL file.

optimises your technology
137

snappyHexMesh (6/49)

Surface preparation and import (3/6):

Example of an STL:

solid backWall

facet normal 1 0 0

outer loop

vertex 5.75 0.687 -0.65

vertex 5.75 -0.667 -0.188

vertex 5.75 -0.669 -0.257

endloop

endfacet

…

endsolid backWall

solid inlet

…

endsolid inlet

Example of an OBJ:
Wavefront OBJ file

Regions:

0 frt-fairing_001_1

1 windshield_002_2

…

points : 132871

triangles : 331653

…

v -0.00568945 0.0242072 1.6e-08

…

v 1.74458 -0.00375868 1.01589

g frt-fairing_001_1

f 64491 64463 65119

…

f 17054 16748 17078

g windshield_002_2

f 66424 67098 66986

…

optimises your technology
138

snappyHexMesh (7/49)

Surface preparation and import (4/6):
Once the file is in STL or OBJ format, we can check how OpenFOAM will
interpret, by running:

surfaceCheck path/to/the_file.stl

It will give us a lot of information, such as:

• Bounding box

• Regions (= solids)

• If any illegal triangles were found

• An histogram of the quality of the triangles

• Lengths of the triangle edges and nearness of vertices

• If the geometry is closed and identifies parts if not closed

optimises your technology
139

snappyHexMesh (8/49)

Surface preparation and import (5/6):
Place the exported geometry file in the folder “constant/triSurface”.

Move/translate the whole geometry so that the center of the geometry
coincides with the origin of the referential.

This can be done with surfaceTransformPoints, e.g.:

surfaceTransformPoints –translate '(-4.25 0.687 -0.55)' \

constant/triSurface/halfParshall.org.stl \

constant/triSurface/halfParshall.stl

optimises your technology
140

snappyHexMesh (9/49)

Surface preparation and import (6/6):
Configure the dictionary file “system/surfaceFeatureExtractDict”,
for extracting feature edges from the geometry, e.g.:

"halfParshall.stl"

{

extractionMethod extractFromSurface;

extractFromSurfaceCoeffs

{

includedAngle 150;

}

writeFeatureEdgeMesh no;

}

Then simply run:

surfaceFeatureExtract

optimises your technology
141

snappyHexMesh (10/49)

Background mesh (1/6):

Also known as “initial mesh” or “base mesh”, this is the initial mesh that
will be used by snappyHexMesh.

Which means that:

• The initial mesh should be similar to the
geometry;

• Or at least good reference points from the
geometry must be part of this initial mesh.

Otherwise, things like this happen.

The image shown is for level 0, i.e. initial mesh.

optimises your technology
142

snappyHexMesh (11/49)

Background mesh (2/6):
Although we can try to fix it with increasing the refinement in the
castellation step with snappyHexMesh:

Level 1 refinement Level 2 refinement

optimises your technology
143

snappyHexMesh (12/49)

Background mesh (3/6):
The usual is a single block done with blockMesh, e.g.:
convertToMeters 1;

vertices

(

(-5.75 -0.686883 -0.65)

(5.75 -0.686883 -0.65)

(5.75 0.687 -0.65)

(-5.75 0.687 -0.65)

(-5.75 -0.686883 0.65)

(5.75 -0.686883 0.65)

(5.75 0.687 0.65)

(-5.75 0.687 0.65)

);

patches

(

patch maxX

((1 2 6 5))

patch minX

((0 4 7 3))

patch maxY

((3 7 6 2))

patch minY

((1 5 4 0))

patch maxZ

((4 5 6 7))

patch minZ

((0 3 2 1))

);

blocks

(

hex (0 1 2 3 4 5 6 7)

(115 14 13)

simpleGrading (1 1 1)

);

optimises your technology
144

snappyHexMesh (13/49)

Background mesh (4/6):

Here is the result in our example:

As shown, this is a very good initial
mesh for our model given the
several reference points that are
present in this initial mesh.

The detail is that we need an
additional layer outside of this
mesh.

optimises your technology
145

snappyHexMesh (14/49)

Background mesh (5/6):
The additional layer outside of the mesh shown is needed for ensuring
that snappyHexMesh is able to properly correlate this initial mesh with
the geometrical model.

One way is to do the math and extend
the vertices defined in “blockMeshDict”
file, along with 2 more cells on all
direction.

The other is to rely on extrudeMesh to
do this for us.

optimises your technology
146

snappyHexMesh (15/49)

Background mesh (6/6):
Example file “system/extrudeMeshDict” from our case:

constructFrom mesh;

sourceCase ".";

sourcePatches(maxX minX maxY minY maxZ minZ);

extrudeModel linearNormal;

nLayers 1;

expansionRatio 1.0;

linearNormalCoeffs

{

thickness 0.02;

}

mergeFaces false;

mergeTol 0;

optimises your technology
147

snappyHexMesh (16/49)

Mesh parameters (1/32):
The file “system/snappyHexMeshDict” has all of the necessary
settings for snappyHexMesh to manipulate the background mesh.

The main reference file is present in the application’s source code folder,
whose location is shown with this command:

echo $FOAM_UTILITIES/mesh/generation/snappyHexMesh

Other examples can be found with this command:

find $FOAM_TUTORIALS –name snappyHexMeshDict

optimises your technology
148

snappyHexMesh (17/49)

Mesh parameters (2/32):

The structure of the file is as follows:

• Initial parameters which control what steps to perform.

• “geometry” block, where we list the geometrical entities we want to
either mesh onto or use as refinement references.

• “castellatedMeshControls” block, for the castellation step.

• “snapControls” block, for the snapping step.

• “addLayersControls” block, for the layer adding step.

• “meshQualityControls” block, for quality control parameters that
are used during the snapping and layer adding steps.

• Last parameters are for debugging and point tolerance.

optimises your technology
149

snappyHexMesh (18/49)

Mesh parameters (3/32) – run steps selection:
There are only 3 options for this section of the dictionary file:

castellatedMesh true;

snap true;

addLayers false;

Setting each one to true or false will tell snappyHexMesh to proceed with
each step.

Keep in mind that each one of these 3 steps has associated a block of
settings for each, as listed in the previous slide.

optimises your technology
150

snappyHexMesh (19/49)

Mesh parameters (4/32) – Geometry definitions (1/5):
The geometry definitions are defined within this block:

geometry

{

//...

};

Inside this block the user should add as many geometry objects as needed,
where each block is identified as follows:

object_file_name.extension

{

type the_type_of_object;

//settings for this object

}

optimises your technology
151

snappyHexMesh (20/49)

Mesh parameters (5/32) – Geometry definitions (2/5):
From our example case, we have two geometries:

refinementBox

{

type searchableBox;

min (-4.35 -1 -0.30);

max (-4.20 1 -0.15);

}

"halfParshall.stl"

{

type triSurfaceMesh;

regions

{

backWall

{

name backWall;

}

…

top

{

name top;

}

}

}

optimises your technology
152

snappyHexMesh (21/49)

Mesh parameters (6/32) – Geometry definitions (3/5):

The details are as follows:

• Type “triSurfaceMesh” is the one used for external model files.

• As the designation implies, this model must be in a file format that
uses a triangle discretization of the surfaces.

• We're using STL, as it's the easiest one to generate and manipulate.

(continues on next slide…)

optimises your technology
153

snappyHexMesh (22/49)

Mesh parameters (7/32) – Geometry definitions (4/5):

• The regions block is where we can rename the solids provided in the
STL and give them the names we want.

• These renamed names will later be used for defining the patches
that make up the surface mesh of our final mesh.

• This is also used because without this renaming step, the default
names assigned by snappyHexMesh would likely be something like
this:

halfParshall_backWall

halfParshall_bottomWall

halfParshall_sideWall

optimises your technology
154

snappyHexMesh (23/49)

Mesh parameters (8/32) – Geometry definitions (5/5):

Other internal geometrical entities can be used, some examples:
• searchableBox – defines a box by bounding points (which we used in our

example case);

• searchableSphere – defines a sphere by center and radius;

• searchableCylinder – defines a cylinder by height vector and radius;

• searchablePlate – defines a plate by origin and span;

• searchablePlane (planeType PointAndNormal) – defines a plane by
point and normal vector;

• searchablePlane (planeType 3Points) – defines a box by plane by
three points.

optimises your technology
155

snappyHexMesh (24/49)

Mesh parameters (9/32) – Castellation controls (1/11):

First we need to understand how this step handles refinement levels:

1. Initial mesh is the level of refinement 0 (zero).

2. Each level of refinement indicates the multiple of 2 for dividing cells. In
other words:

• level 1: a cell from the initial mesh is split into 2 parts on all major
directions (X, Y, Z), in it’s own referential. In other words, each cell
will be subdivided into 8 smaller cells.

• level 2: cell split into 4 parts over X,Y,Z → will be subdivided into 64
smaller cells.

• level 3: split into 8 parts over X,Y,Z→ 512 smaller cells.

optimises your technology
156

snappyHexMesh (25/49)

Mesh parameters (10/32) – Castellation controls (2/11):
3. Refinement levels are not cumulative:

• if two or more overlapping zones and/or surfaces are set to
different levels of resolution, it's only the greatest value that will be
used.

• For example:

Level 3

Level 2
Level 3

optimises your technology
157

snappyHexMesh (26/49)

Mesh parameters (11/32) – Castellation controls (3/11):

Choosing which cells to refine is done based on the three major types of
geometries in 3D space:

• Lines: Provided as feature edges in OpenFOAM's the file format
“.eMesh”.

• Surfaces: More specifically, all of the surfaces from the geometries
defined in the “geometry” block.

• Volumes: Can refine inside or outside of closed shells from the
“geometry” block; or distance based for any geometric entity from the
“geometry” block.

optimises your technology
158

snappyHexMesh (27/49)

Mesh parameters (12/32) – Castellation controls (4/11):

In block “castellatedMeshControls”, we focus on:

• “maxLocalCells” is used when running in parallel. This is the
guideline on when it should transfer excess cells to other processor
sub-domains, assuming the others are less populated.

• “maxGlobalCells” is the maximum number of cells that
snappyHexMesh will allow to be generated in the refinement step. A
rule of thumb is that mesh generation can take up somewhere between
1 and 2 GB of RAM for each one million cells.

optimises your technology
159

snappyHexMesh (28/49)

Mesh parameters (13/32) – Castellation controls (5/11):

• “features” provides a list of nameless blocks that define the feature
edge files to be used for refinement and later on for snapping.

• For each nameless block, we can define the file to be used and the
associated refinement level.

• The advantages of using feature edges as references for the
refinement/castellation step depend on the geometry at hand.

• Best to define the refinement level for each file to be 0; otherwise,
there is a risk of having refined cells in very impractical locations.

optimises your technology
160

snappyHexMesh (29/49)

Mesh parameters (14/32) – Castellation controls (6/11):

From our example case, this is the “features” block:

features

(

{

file "halfParshall.eMesh";

level 0;

}

);

This is what would
happen with level 1

optimises your technology
161

snappyHexMesh (30/49)

Mesh parameters (15/32) – Castellation controls (7/11):

• “refinementSurfaces” block provides the refinement settings for
the surfaces on the geometries defined in the geometry block.

• The structure to be followed is similar to the one used in the
geometry block.

• For each solid (named region) we can define two sets of refinement
levels, namely the minimum and the maximum level.

• Note: It is good to remember that a more uniform mesh is usually
preferable to a mesh with many mesh level refinement transitions.

optimises your technology
162

snappyHexMesh (31/49)

Mesh parameters (16/32) – Castellation controls (8/11):
From the example case – “refinementSurfaces” block:

outlet

{

level (0 0);

}

symmetry

{

level (0 0);

}

top

{

level (0 0);

}

}

}

}

refinementSurfaces

{

"halfParshall.stl"

{

level (0 0);

regions

{

backWall

{

level (0 0);

}

bottomWall

{

level (0 0);

}

…

optimises your technology
163

snappyHexMesh (32/49)

Mesh parameters (17/32) – Castellation controls (9/11):

• “resolveFeatureAngle” is in essence what defines the smallest
angle between two surfaces that we can use to consider if there is a
sharp edge between the two.

• “refinementRegions” already
mentioned regarding refinement
volumes, which are based on the
geometries defined in “geometry”.

refinementRegions

{

refinementBox

{

mode inside;

levels ((1e-15 2));

}

}

From our example case:

The first value, “1e-15”, is
meant to be used only for the
“distance” mode

optimises your technology
164

snappyHexMesh (33/49)

Mesh parameters (18/32) – Castellation controls (10/11):

• “locationInMesh” will tell the mesher that a particular point is
inside or outside of the closed surface. Use with care!

• If the point is inside, it will preserve only the mesh inside the geometry.

• If the point is outside, it will preserve only the mesh outside of the
geometry.

• Examples:

Good points

Bad points

optimises your technology
165

snappyHexMesh (34/49)

Mesh parameters (19/32) – Castellation controls (11/11):

How is “locationInMesh” used?

It’s used for drawing lines between this reference point and the centers of
cells and faces, to ascertain which cells are inside or outside of the mesh.

Example for when
the point outside
of the geometry.

Mesh

Geometry

optimises your technology
166

snappyHexMesh (35/49)

Mesh parameters (20/32) – Snapping controls (1/5):

The block for this snapping/morphing step starts and ends like this:

snapControls

{

//...

}

As for the specific parameters for this block, it is all well explained in the
comments already available in OpenFOAM's example, therefore we'll
address how each parameter can affect the snapping process.

optimises your technology
167

snappyHexMesh (36/49)

Mesh parameters (21/32) – Snapping controls (2/5):

• “nSmoothPatch” is the number of iterations for smoothing. When set
to 0, stays true to the initial mesh shape; when set too high, will result
in a surface mesh that will resemble a seawater blowfish.

• “tolerance” is the relative distance for cell edge length for snapping
points.

• Common values are 1.0 and 2.0.

• If values are too high, it risks snapping vertexes on the mesh that
have nothing to do with the nearest surface.

• If the values are too low, snapping might never occur.

optimises your technology
168

snappyHexMesh (37/49)

Mesh parameters (22/32) – Snapping controls (3/5):

• “nSolveIter” is the number of iterations for adjusting the mesh.

• Set to 0 if the surface of the base mesh is parallel to the surfaces of
the final mesh.

• Other integer values above zero can improve the resulting mesh.

• “nRelaxIter” is pretty much a must-use.

• Default value of 5 usually does a very good job.

• More iterations can make it slower than needed.

optimises your technology
169

snappyHexMesh (38/49)

Mesh parameters (23/32) – Snapping controls (4/5):

• “nFeatureSnapIter” is the number of iterations for snapping to
feature edges.

• The default value of 10 is usually the best value.

• Too low can result in an incomplete morph.

• Too high can lead to strange mesh distortions.

• “implicitFeatureSnap” when set to true, you don't need the
“.eMesh” files.

• “explicitFeatureSnap” when set to true, it will use the “.eMesh”
files listed in the features block at “castellatedMeshControls”.

optimises your technology
170

snappyHexMesh (39/49)

Mesh parameters (24/32) – Snapping controls (5/5):

• “multiRegionFeatureSnap” when set to true, it will only work if
“explicitFeatureSnap” is also set to true.

• Only useful for multi-region meshing, namely on both inside and
outside.

• Using this is risky, because it will enforce mesh quality controls for
both sides of the mesh, namely inside and outside, which can result
in crooked looking mesh.

When set to false

When set to true

optimises your technology
171

snappyHexMesh (40/49)

Mesh parameters (25/32) – Layer addition controls (1/7):

The importance of adding layers is related to the requirements needed for
the wall treatment models being used for the simulation.

The block for this layer addition step starts and ends like this:

addLayersControls

{

//...

}

optimises your technology
172

snappyHexMesh (41/49)

Mesh parameters (26/32) – Layer addition controls (2/7):

The more relevant layer adding parameters are:

• “relativeSizes” when set to true, will use dimensioning relative to
the cell edges where the layers will be added.

• “layers” block lists all patches (boundary surfaces) that should have
layers added or not to them. It can even allow per-patch definition of
the layer adding parameters.

• “expansionRatio” is the factor of how each layer relates to the
previous on added.

• “finalLayerThickness” is the first reference layer size, which is the
thickness of the layer farthest from the original surface.

optimises your technology
173

snappyHexMesh (42/49)

Mesh parameters (27/32) – Layer addition controls (3/7):

• “minThickness” is the smallest desired thickness at the middle axis
of a layer’s cell.

• “nBufferCellsNoExtrude” is the number of cells on the mesh
before adding layers, relative to the border of a patch. For example,
with a value of 1, only the centre cells on the mesh below would get
layers added:

This is the surface mesh
of the patch on which
layers will be added.

optimises your technology
174

snappyHexMesh (43/49)

Mesh parameters (28/32) – Layer addition controls (4/7):

Example of the “layers” block:

layers

{

backWall

{

nSurfaceLayers 1;

}

bottomWall

{

nSurfaceLayers 1;

}

…

…

inlet

{

nSurfaceLayers 1;

// Per patch layer data

expansionRatio 1.0;

finalLayerThickness 2.0;

minThickness 0.1;

}

…

optimises your technology
175

snappyHexMesh (44/49)

Mesh parameters (29/32) – Layer addition controls (5/7):

Usual sources of problems for not being able to add layers with
snappyHexMesh:

• The mesh resulting from the snapping step has quality issues.

• For example, the image below demonstrates that layers cannot be
added near the shown distorted cells.

optimises your technology
176

snappyHexMesh (45/49)

Mesh parameters (30/32) – Layer addition controls (6/7):

• Complex surfaces identified as the same solid in STL, can result in
calculations of where the layer should start and where it should end.

• For example, if a complex profile such as the “bottomWall” in our
example case, having all surfaces at the bottom catalogued as being
part of “bottomWall”, results in this layer adding flaw:

optimises your technology
177

snappyHexMesh (46/49)

Mesh parameters (31/32) – Layer addition controls (7/7):

• Layer sizes can be relative or absolute.

• If the mesh resulting from the snapping step gives rise to very small
cells where cuts had to be done, then very thin layers can appear
where the cells became smaller, when using relative sizing.

• Absolute sizing can fix this issue, although it requires a clear notion
of the geometrical sizes desired for the added layers.

• When layers are set to be too large, it can result in very distorted
internal mesh, given that the layers are added by compressing the
internal mesh, not by cutting the cells near the surface.

optimises your technology
178

snappyHexMesh (47/49)

Mesh parameters (32/32) :

As for the remaining controls:

• Mesh quality controls are usually well calibrated in the tutorial cases
and rarely need to be changed.

• Nonetheless, changing them should be done with simple small test
cases, for diagnosing if they will affect your mesh or not.

• The “debug” flag(s) is(are) usually only needed for diagnosing in which
exact mesh operation things went wrong.

• The “mergeTolerance” rarely needs to be changed from the default
“1E-6”. This is relative to the bounding box of the whole mesh.

optimises your technology
179

snappyHexMesh (48/49)

Visualisation (1/2):

When it comes to visualizing the mesh, the 3 important rules are:

1. Make sure you load the correct time step.

• This is because when snappyHexMesh is executed without the
option “-overwrite”, there will be a time snapshot for each
meshing step.

2. Make sure you uncheck the option “Decompose polyhedra” (shown
in the next slide).

3. Make sure you use the filter “Extract Cells by Region”.

• This is because the “Slice” filter will cut the cells by decomposing
the cut cells into triangles.

optimises your technology
180

snappyHexMesh (49/49)

Visualisation (2/2):

If the option “Decompose polyhedra”
is checked (shown at the bottom of
the image), the result is that
polyhedral cells will be decomposed
into tetrahedral cells.

Note: Also uncheck “Cache mesh”, if
you want to be able to simply click on
the “Refresh” button for seeing a
newly generated mesh.

optimises your technology

Getting Started with OpenFOAM

nel s on.m a r q ue s @ fs dy n a mi c s .p t ; bruno.s a nto s @ fs dy n a m i c s .p t

1st September 2019

Virtual Tracer Tests:
Coupling CFD and
CREng to Simulate
WRRFs Unit Processes

mailto:nelson.marques@fsdynamics.pt
mailto:bruno.santos@fsdynamics.pt

optimises your technology

Simulation
Meshing et al

182

optimises your technology

1. Relevant solvers

2. Boundary conditions

• Manipulation of fields and domains

• Turbulence models

3. Convective term discretization

4. Diffusive term discretization

5. Linear system solvers

6. Parallel runs

183

Section Contents

optimises your technology
184

Relevant solvers (1/3)

• OpenFOAM has a number of solvers available: openfoam.org/features/

• With OpenFOAM, users select solvers rather than models, as in
commercial CFD codes.

• There are basic modelling functionalities which permeate several
solvers at once. For example: solvers that allow for turbulence
modelling generally allow users to select one model from the vast
available range; the same is true for the specification of thermophysical
properties.

• New solvers can be easily (relatively speaking) developed if necessary,
since OpenFOAM is fundamentally a tool for solving partial differential
equations.

http://openfoam.org/features/

optimises your technology
185

Relevant solvers (2/3)

“Basic” CFD codes

•laplacianFoam

•scalarTransportFoam

•potentialFoam

•etc

Incompressible Flow

•icoFoam

•nonNewtonianIcoFoam

•etc

Compressible Flow

•rhoPimpleFoam

•rhoSimpleFoam

•etc

Multiphase flow

•bubbleFoam

•interFoam

•MRFMultiphaseInterFoam

•etc

Combustion

•reactingFoam

•etc

Particle-Tracking flows

•UncoupledKinematicParcelFoam

•LTSReactingParcelFoam

•etc

Heat transfer

•buoyantBoussinesqPimpleFoam

•buoyantPimpleFoam

•etc

Molecular dynamics

• etc

DNS Electromagnetics Stress analysis of solids Finance

optimises your technology
186

Relevant solvers (3/3)

Solver
Base
model
equations

Other
physical
models

Turbulence
Time
domain

Fluid
properties

interFoam
Navier-
Stokes

VOF
All
incompressible
flow models

Transient Constant

buoyantBoussinesqPimpleFoam
Navier-
Stokes

Energy
equation,
with
radiation

All
incompressible
flow models

Transient

driftFluxFoam
Navier-
Stokes

Settling
Scalar(s)

Incompressible
flow models

Transient Varying

optimises your technology
187

Boundary conditions (1/21)

We will show:

1. How to define boundary conditions for the fields at t= 0s

2. How to initialize the internal fields

3. How to set-up the turbulence models and initial values

The case overview and respective boundary conditions are quickly revised
in the next slide:

optimises your technology
188

Boundary conditions (2/21)

• Case name: halfParshall
• Boundary conditions:

• Inlet: 375 kg/s
• Bottom floor and side wall: no-slip
• Outlet surfaces: pressure outlet
• Symmetry plane surface: symmetry

• Fluid properties:
• Water:

• Density: 999 kg/m3

• Dynamic Viscosity: 1.15E-3 Pa.s
• Air:

• Density: 1.18 kg/m3

• Dynamic Viscosity: 1.855E-5 Pa.s

optimises your technology
189

Boundary conditions (3/21)

In summary, the example case has:

• 6 field files, which are initially defined in the folder 0.orig:

• U – velocity field

• p_rgh – pressure field, without the hydrostatic term

• alpha.water – phase fraction field

• 1 = 100% water

• 0 = 100% not water (air in our case)

• epsilon – turbulent dissipation rate field

• k – turbulent kinetic energy field

• nut – turbulent dynamic viscosity field

optimises your technology
190

Boundary conditions (4/21)

• 4 major groups of boundary conditions:

1. Inlet – assigned to the “inlet” surface

• Velocity set to a predefined value.

• Pressure set to zero gradient or fixed flux.

• Phase fraction set to 1.

• Turbulence fields k and epsilon set with appropriate values
(addressed in the respective subtopic section).

• nut set to calculated.

(continues in the next slide…)

optimises your technology
191

Boundary conditions (5/21)

2. Outlet – assigned to the “outlet” and “top” surfaces

• Velocity set to zero gradient and/or a condition that disables
recirculation.

• Pressure (p_rgh) set to 0 Pa.

• Turbulence fields k and epsilon set to zero gradient and a
condition that disables recirculation.

• nut set to calculated.

(continues in the next slide…)

optimises your technology
192

Boundary conditions (6/21)

3. Wall – assigned to the “backWall”, “bottomWall”, “sideWall”
surfaces

• Velocity set to no-slip, i.e. 0 m/s.

• Pressure set to zero gradient or fixed flux.

• Turbulence fields k, epsilon and nut set use wall treatments.

4. Symmetry – assigned to the “symmetry” surface

• Boundary set to “symmetry” on all fields.

optimises your technology
193

Boundary conditions (7/21)

Main parameters in a field file:

• dimensions – the units for the field:

• Mass - kilogram
• Length - metre
• Time - second
• Temperature - Kelvin
• Quantity - mole
• Current - ampere
• Luminous intensity – candela

• internalField – the value list for the internal field

• boundaryField – the list of boundary conditions

Example:

[0 1 1 0 0 0 0] = m/s

optimises your technology
194

Boundary conditions (8/21)

For example, the U field file roughly looks like this:

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0.0 0.0 0.0);

boundaryField

{

backWall

{

type fixedValue;

value uniform (0.0 0.0 0.0);

}

bottomWall

{

type fixedValue;

value uniform (0.0 0.0 0.0);

}

…

}

optimises your technology
195

Boundary conditions (9/21)

Figuring out what are the corresponding boundary conditions is usually
done with the following strategies:

1. Looking into the tutorial cases that OpenFOAM has.

2. Checking the OpenFOAM User Guide, section “5.2 Boundaries”.

3. Looking at the complete list of boundary conditions, available in the
Doxygen generated code documentation: cpp.openfoam.org/v4/

• In the section “Using OpenFOAM” are 3 links:

• FunctionObjects namespace Foam::functionObjects

• Boundary Conditions

https://cpp.openfoam.org/v4/
https://cpp.openfoam.org/v4/group__grpFunctionObjects.html
https://cpp.openfoam.org/v4/namespaceFoam_1_1functionObjects.html
https://cpp.openfoam.org/v4/pageBoundaryConditions.html

optimises your technology
196

Boundary conditions (10/21)

The next slides show the boundary conditions used in the example case.

Firstly, however, a small side note about Regular Expressions:

• These are search patterns that OpenFOAM supports in several
dictionary files.

• For example:

• “(backWall|bottomWall|sideWall)” → refers to the 3 patch
names backWall, bottomWall and sideWall.

• “procBoundary.*” → refers to all patch names that start with
“procBoundary”.

For more details: en.wikipedia.org/wiki/Regular_expression

http://en.wikipedia.org/wiki/Regular_expression

optimises your technology
197

Boundary conditions (11/21)

Inlet group (1/2):

p_rgh:
inlet

{

type fixedFluxPressure;

value uniform 0.0;

}

U:
inlet

{

type flowRateInletVelocity;

massFlowRate 375;

rho rho;

rhoInlet 999.0;

}

alpha.water:
inlet

{

type fixedValue;

value uniform 1.0;

}

nut:
inlet

{

type calculated;

value uniform 0.0;

}

optimises your technology
198

Boundary conditions (12/21)

Inlet group (2/2):

k:
inlet

{

type turbulentIntensityKineticEnergyInlet;

intensity 0.5;

value uniform 3.778352;

}

epsilon:
inlet

{

type turbulentMixingLengthDissipationRateInlet;

mixingLength 0.2;

value uniform 1.665138;

}

optimises your technology
199

Boundary conditions (13/21)

Outlet group:

p_rgh:
outlet

{

type fixedValue;

value uniform 0.0;

}

U:
outlet

{

type pressureInletOutletVelocity;

value uniform (0.0 0.0 0.0);

}

alpha.water:
outlet

{

type inletOutlet;

inletValue uniform 0;

value uniform 0;

}

nut:
outlet

{

type calculated;

value uniform 0.0;

}

k, epsilon:
outlet

{

type zeroGradient;

}

optimises your technology
200

Boundary conditions (14/21)

Wall group (1/2):

p_rgh:
“(backWall|bottomWall|sideWall)”

{

type fixedFluxPressure;

value uniform 0.0;

}

U:
“(backWall|bottomWall|sideWall)”

{

type fixedValue;

value uniform (0.0 0.0 0.0);

}

alpha.water:
“(backWall|bottomWall|sideWall)”

{

type zeroGradient;

}

nut:
“(backWall|bottomWall|sideWall)”

{

type nutkWallFunction;

value uniform 0.0;

}

optimises your technology
201

Boundary conditions (15/21)

Wall group (2/2):

k:
“(backWall|bottomWall|sideWall)”

{

type kqRWallFunction;

value uniform 3.778352;

}

epsilon:
“(backWall|bottomWall|sideWall)”

{

type epsilonWallFunction;

value uniform 1.665138;

}

optimises your technology
202

Boundary conditions (16/21)

Symmetry group, for all 6 fields:

symmetry

{

type symmetry;

}

Special group, interfaces between domains, in all 6 fields:

"procBoundary.*"

{

type processor;

value uniform init_value_or_vector;

}

optimises your technology
203

Boundary conditions (17/21)

Manipulation of fields and domains (1/2):

This was not used in our example case but the idea is simple:

What if we need to initialize a part of the internal field and/or fixed
value patches with a value specific only to a group of cells or faces?

This is where setFields comes into play. This utility will use the settings
given in the dictionary file “system/setFieldsDict”, for assigning
values to each desired field.

Example in the next slide.

optimises your technology
204

Boundary conditions (18/21)

defaultFieldValues

(

volScalarFieldValue alpha.water 0

);

regions

(

// Set cell values

// (does zerogradient on boundaries)

boxToCell

{

box (-2.0 -2.0 -1) (11.0 1.0 0.2);

fieldValues

(

volScalarFieldValue alpha.water 1

);

}

// Set patch values (using ==)

boxToFace

{

box (-2.0 -2.0 -1) (11.0 1.0 0.2);

fieldValues

(

volScalarFieldValue alpha.water 1

);

}

);

Note: The selection box is meant to include
the cell centres and/or face centres, for
selecting the respective cells and faces.

Manipulation of fields and domains (2/2):

optimises your technology
205

Boundary conditions (19/21)

Turbulence Models (1/3):

Two categories of files have to be taken into account:

• “constant/turbulenceProperties” – for defining the major
group of turbulence modelling to be used and the respective options
settings for that model.

• In the time folders, we then have the fields associated to the turbulence
model we want to use.

• Example in our “0.orig” folder are: k, epsilon and nut

optimises your technology
206

Boundary conditions (20/21)

Turbulence Models (2/3):

Content of “constant/turbulenceProperties”:

simulationType RAS;

RAS

{

RASModel kEpsilon;

turbulence on;

printCoeffs on;

}

Want laminar flow modelling?

simulationType laminar;

optimises your technology
207

Boundary conditions (21/21)

Turbulence Models (3/3):

The last critical detail for turbulence models is:

What initial values should we use and what values at the inlets?

This depends on your simulation, but a few guidelines exist, e.g. online:

• www.cfd-online.com/Wiki/Turbulence_free-
stream_boundary_conditions

• support.esi-cfd.com/esi-users/turb_parameters/

The bottom line is that you will have to test which values are suited to your
simulation.

http://www.cfd-online.com/Wiki/Turbulence_free-stream_boundary_conditions
http://support.esi-cfd.com/esi-users/turb_parameters/

optimises your technology
208

Convective term discretization (1/4)

Convective term refers to the divergence operator 𝛻 ∙

The OpenFOAM Programmer’s Guide goes into more details about this in
the subsection “2.4.2 The convection term”, in which the following
expression can be found:

Which shows how the convection term is integrated and linearized.

We will be addressing on this topic how we can control this term.

optimises your technology
209

Convective term discretization (2/4)

The settings for the divergence schemes in the file “system/fvSchemes”,
namely in the block “divSchemes”.

From our example case:
divSchemes

{

default none;

div(rhoPhi,U) Gauss upwind;

div(phi,alpha) Gauss upwind;

div(phirb,alpha) Gauss upwind;

div(phi,k) Gauss upwind;

div(phi,epsilon) Gauss upwind;

div((muEff*dev(T(grad(U))))) Gauss linear;

}

This is currently defined to be mostly of first order discretization, i.e.
upwind.

optimises your technology
210

Convective term discretization (3/4)

How do we know which terms we need?

We either:

1. Let the solver complain when they are not present.

2. Or we look at the source code. For example:
cat $FOAM_SOLVERS/incompressible/simpleFoam/UEqn.H

we can see this:

// Momentum predictor

tmp<fvVectorMatrix> UEqn

(

fvm::div(phi, U)

+ turbulence->divDevReff(U)

==

fvOptions(U)

);

Refers to this entry:
div(phi,U)

optimises your technology
211

Convective term discretization (4/4)

How can we increase accuracy in our example case?

• Use an intermediate scheme between linear and upwind:
div(rhoPhi,U) Gauss linearUpwind grad(U);

• Special limiter, great for VOF-related fields:
div(phi,alpha) Gauss vanLeer;

• Second order scheme:
div(phirb,alpha) Gauss linear;

• Problems with running in parallel with linearUpwind?
div(phi,epsilon) Gauss linearUpwind limitedGrad;

along with the gradSchemes block having this entry:
limitedGrad cellLimited Gauss linear 1;

optimises your technology
212

Diffusive term discretization (1/4)

Diffusive term refers to the Laplace operator 𝛻2

The OpenFOAM Programmer’s Guide goes into more details about this in
the subsection “2.4.1 The Laplacian term”, in which the following
expression can be found:

Which shows how the diffusion term is integrated and linearized.

We will be addressing on this topic how we can control this term.

optimises your technology
213

Diffusive term discretization (2/4)

The settings for the Laplacian schemes in the file “system/fvSchemes”,
in the block “laplacianSchemes”.

From our example case:
laplacianSchemes

{

default Gauss linear corrected;

}

Meaning:

• The same setting is used for all Laplacian terms.

• Second order or above should always be used.

• corrected option is the surface normal gradient scheme to be used.

optimises your technology
214

Diffusive term discretization (3/4)

Other examples from OpenFOAM’s tutorials:

Gauss linear limited corrected 0.5;

Gauss linear limited corrected 0.333;

These usually depend on how orthogonal or non-orthogonal the mesh
cells are.

Gauss linear orthogonal;

Gauss linear corrected;

Gauss linear uncorrected;

limited corrected 0.5

limited corrected 1

limited corrected 0

optimises your technology
215

Diffusive term discretization (4/4)

Laplacian schemes depend on the surface normal gradient discretization
(block “snGradSchemes”).

Therefore we have to take into account how the normal of a face relates to
the centers of the cells that share said face.

Specifically, an orthogonal mesh
has cell centers aligned with the
centers and normals of the faces
shared by those cells.

optimises your technology
216

Linear system solvers (1/35)

The end result of the discretization process are linear systems of
equations:

𝑨𝒙 = 𝒃

Where:
• the bold forms designate tensor quantities,
• uppercase letters stand for matrices,
• lowercase for vectors.

These equations will appear for every conservation law and at every outer
iteration. Depending on the cases, their approximate solution can easily
reach 75% of the overall CPU time.

optimises your technology
217

Linear system solvers (2/35)

In order to configure the solver entry for each named block, we need to
assess the type of equation that will be discretised and that will give rise
the matrix form 𝑨𝒙 = 𝒃, where:

• 𝑨 is the coefficient matrix that correlates the values between the
centres, i.e., our unknowns;

• 𝒙 is the vector that represents the values at the cell centres for which
we are solving the linear system;

• 𝒃 keeps the source terms for each respective cell.

optimises your technology
218

Linear system solvers (3/35)

As a result of this construct, the following types of equations will exist and
the respective matrix solvers should be used:

• The equation for the pressure field, i.e., continuity equation, gives rise
to a symmetric matrix, hence it should use solvers devised for this type
of matrices.

• All other equations give rise to a usually non-symmetric matrix due to
convection, which is why we cannot use solvers that are meant for
symmetric matrix equations.

optimises your technology
219

Linear system solvers (4/35)

𝑖 𝑘𝑘 0 ⋯ 0 0 0
𝑘𝑘 𝑗 ℎℎ ⋯ 0 0 0

0 ℎℎ 𝑘 ⋱ 0 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋮
0 0 ⋱ ⋱ 𝑔𝑔 0
0 0 0 ⋯ 𝑔𝑔 𝑟 𝑙𝑙
0 0 0 ⋯ 0 𝑙𝑙 𝑠

𝑖 ℎ𝑗 𝑞𝑤 ⋯ 0 0 0
𝑘𝑧 𝑗 𝑘𝑞 ⋯ 0 0 0

𝑤𝑒 𝑙𝑒 𝑘 ⋱ 0 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋮
0 0 ⋱ ⋱ 𝑎𝑒 0
0 0 0 ⋯ 𝑎𝑥 𝑟 𝑞𝑢
0 0 0 ⋯ 0 𝑙𝑤 𝑠

Symmetric A matrix Asymmetric A matrix

optimises your technology
220

Linear system solvers (5/35)

The file “system/fvSolution” must be used to select whatever method
is found appropriate to solve.

Here are a few expressions that we will be using:

• outer iteration – this usually refers to one step in time, if transient, or
to a sweep of all transport equations which are being solved.

• matrix solver iteration – In the next slide you will see at the end of
each line the information “No Iterations”, which refers to the
number of iterations it took to solve the respective linear system of
equations.

Note: More details are available in section "4.5 Solution and algorithm
control" in the OpenFOAM User Guide

optimises your technology
221

Linear system solvers (6/35)

This is an example output for an outer iteration:

Time = 2

DILUPBiCG: Solving for Ux, Initial residual = 0.33783062, Final residual = 0.022319355, No Iterations 2

DILUPBiCG: Solving for Uy, Initial residual = 0.16839243, Final residual = 0.0037979544, No Iterations 2

DILUPBiCG: Solving for Uz, Initial residual = 0.17283387, Final residual = 0.016074394, No Iterations 1

DILUPBiCG: Solving for h, Initial residual = 0.97900298, Final residual = 0.020167345, No Iterations 1

GAMG: Solving for p, Initial residual = 0.90628728, Final residual = 0.0064221651, No Iterations 12

time step continuity errors : sum local = 0.00046531931, global = 1.4428116e-006, cumulative = -3.528428e-006

rho max/min : 1.1274839 0.72937754

DILUPBiCG: Solving for epsilon, Initial residual = 0.99931859, Final residual = 4.869335e-005, No Iterations 1

DILUPBiCG: Solving for k, Initial residual = 0.82482828, Final residual = 9.5040752e-006, No Iterations 1

ExecutionTime = 2.509 s ClockTime = 2 s

DILUPBiCG: Solving for Ux, Initial residual = 0.33783062,

Final residual = 0.022319355, No Iterations 2

Zooming-in on one equation:

optimises your technology
222

Linear system solvers (7/35)

system/fvSolution:
This dictionary file was designed to handle the settings for the linear
equation solvers and the algorithms to be used by a solver application, e.g.
interFoam.

Starting with the linear equation solvers, these are configured inside this
block list:

solvers

{

…

}

It’s in here that we will be configuring the matrix solvers.

optimises your technology
223

Linear system solvers (8/35)

Starting with our example case, for configuring the linear equation solvers
for the fields named “alpha.water”, we are using the following settings:

"alpha.water.*"

{

nAlphaCorr 2;

nAlphaSubCycles 1;

cAlpha 1;

MULESCorr yes;

nLimiterIter 3;

solver smoothSolver;

smoother symGaussSeidel;

tolerance 1e-8;

relTol 0;

}

Specific for the linear
equations related to the
phase fraction equations

optimises your technology
224

Linear system solvers (9/35)

Keep in mind that each solver has its own settings, where the first tier of
possible options for a matrix solver refers to one of two major possible
types of settings:

• preconditioner is needed for solvers that rely on a preconditioning
strategy to speed up their iterative process.

• For more details on what preconditioning is, see:
en.wikipedia.org/wiki/Preconditioner

• smoother is designed to smooth-out numerical issues that usually arise
from ill-formed matrices and strongly uneven intermediate solutions for
the matrix equation.

More details available at: www.tfd.chalmers.se/~hani/kurser/OS_CFD_2008/TimBehrens/tibeh-report-fin.pdf

http://en.wikipedia.org/wiki/Preconditioner
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2008/TimBehrens/tibeh-report-fin.pdf

optimises your technology
225

Linear system solvers (10/35)

There are 3 other parameters that are common to most of the matrix
solvers. Let us look at an example output from an outer iteration:

The residual is essentially the result from this expression:

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑠𝑢𝑚(𝑎𝑏𝑠 𝒃 − 𝑨𝒙)

The reported residual values are normalized values from this equation, in
order to keep values between 0.0 and 1.0 for an easier interpretation of
how good or bad the residuals are.

DILUPBiCG: Solving for Ux, Initial residual = 0.33783062,

Final residual = 0.022319355, No Iterations 2

optimises your technology
226

Linear system solvers (11/35)

The 3 major parameters we need to control:

• tolerance – this is the minimum residual value we want to achieve at
the end of the iterations of the matrix solver. In other words, if the
Final Residual falls below this value, the matrix solver stops
iterating. Default value is 1e-6.

• relTol – this relative tolerance refers to whether the residual for the
current iteration is lesser than relTol times the Initial Residual.
Default value is 0.0 (= off).

• maxIter – maximum number of iterations for the matrix solver to
perform, regardless of the convergence status. Anti-infinite loop
counter-measure. Default value is 1000.

optimises your technology
227

Linear system solvers (12/35)

One tolerance will suffice to stop the matrix solver:

• In order to only define the relative tolerance:

tolerance 0.0;

relTol 0.01;

• In order to only define the (absolute) tolerance:

tolerance 1e-06;

relTol 0.0;

• In order to allow the maximum number of iterations to be reached:

tolerance 0.0;

relTol 0.0;

optimises your technology
228

Linear system solvers (13/35)

Which values should you use?

It all depends on:

• the problem you are solving;

• how accurate you want it to be, while weighing:

• it is usually never possible to reach the exact solution for a matrix
equation…

• and even if it is, the solution might be useless if an outer iteration is
still needed for balancing the results over all equations.

Therefore, this is usually something that can be adjusted after reaching
good solutions for your cases.

optimises your technology
229

Linear system solvers (14/35)

A few good reference values are as follows:

• For the pressure field, make sure you have a tighter control, such as:

tolerance 1e-06;

relTol 0.001;

maxIter 250;

• For all other equations, you can loosen up a bit the control, since most
other equations will be affected by the pressure field in the next major
iteration:

tolerance 1e-05;

relTol 0.01;

maxIter 100;

optimises your technology
230

Linear system solvers (15/35)

Which matrix solvers should we use and in which situations? The answer
strongly depends:
• on the simulation being performed;
• on whether the run in serial or in parallel.

Therefore, don't assume that there is a fool proof way of selecting the
solvers and respective preconditioners or smoothers.

Nonetheless, it is possible to present some guidelines:
1. When in doubt, use the values in the tutorials which are the most

similar to your problem.
(continues…)

optimises your technology
231

Linear system solvers (16/35)

2. If you need the matrix solving steps to be as fast/efficient as possible, a
good combination is to use:

• For the pressure equations, use “GAMG”. Example:

p

{

solver GAMG;

smoother GaussSeidel;

cacheAgglomeration true;

nCellsInCoarsestLevel 10;

agglomerator faceAreaPair;

mergeLevels 1;

tolerance 1e-06;

relTol 0.001;

maxIter 250;

};

(continues…)

optimises your technology
232

Linear system solvers (17/35)

• GAMG can be somewhere 2 and 5 times faster than using PCG+DIC.

• There is a downside to using GAMG: it is only efficient enough if you
properly calibrate its parameters. For example:

• “nCellsInCoarsestLevel” can depend on the number of cells your
case has, but make sure to test the values for a few major
iterations first, before using the value in a real simulation
scenario.

• The PBiCG solver is usually more efficient for running in parallel for
all other equations (non-pressure). Although in some cases, GAMG
is faster than PBiCG.

(continues…)

optimises your technology
233

Linear system solvers (18/35)

3. The PCG solver can in many cases be better than GAMG for the
pressure equations, therefore, you should always double-check which
one is best for your simulation.

4. In some cases, the FDIC preconditioner may prove to be more efficient
than DIC and give results faster (symmetric matrices only).

5. GAMG can also be used as a preconditioner for working cooperatively
with a matrix solver, but isn't very common. But again, it can be and
should be tested for your own cases.

(continues…)

optimises your technology
234

Linear system solvers (19/35)

6. A choice of smoother (specific matrix solvers only), may depend
strongly on your case. A few examples:

• GaussSeidel is commonly used in conjunction with GAMG, since it
can offer a direct resolution for each major block.

• DIC and DILU can also be used as smoothers, but they can prove to
be more efficient if used in conjunction with GaussSeidel, namely by
using the variants DICGaussSeidel and DILUGaussSeidel.

(continues…)

optimises your technology
235

Linear system solvers (20/35)

7. “smoothSolver” as a matrix solver can prove to be more efficient, if a
preconditioner has issues due to numerical spikes. A smoother will
instead try to solve the equation directly, while sort-of not fretting over
imperfections in the achieved solutions. Configuration example:

U

{

solver smoothSolver;

smoother GaussSeidel;

tolerance 1e-8;

relTol 0.1;

nSweeps 1;

}

optimises your technology
236

Linear system solvers (21/35)

Continuing with the settings we have on our example case:

p_rgh

{

$pcorr;

tolerance 1e-07;

relTol 0.05;

}

p_rghFinal

{

$p_rgh;

relTol 0;

}

pcorr

{

solver GAMG;

tolerance 1e-5;

relTol 0.001;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

cacheAgglomeration on;

agglomerator faceAreaPair;

nCellsInCoarsestLevel 10;

mergeLevels 1;

}

optimises your technology
237

Linear system solvers (22/35)

And for all of the other fields:

"(U|k|epsilon).*"

{

solver smoothSolver;

smoother symGaussSeidel;

tolerance 1e-06;

relTol 0;

minIter 1;

}

optimises your technology
238

Linear system solvers (23/35)

Algorithm configurations

The most common algorithms implemented in OpenFOAM:

• PISO – Pressure-Implicit Split-Operator

• SIMPLE – Semi-Implicit Method for Pressure-Linked Equations

• PIMPLE – it’s a PISO-SIMPLE hybrid

In our case example, we use interFoam with these settings:
PIMPLE

{

momentumPredictor no;

nOuterCorrectors 1;

nCorrectors 3;

nNonOrthogonalCorrectors 1;

}

optimises your technology
239

Linear system solvers (24/35)

In general, the algorithms have one or more of the following parameters:

nOuterCorrectors 0;

nCorrectors 0;

nNonOrthogonalCorrectors 0;

turbOnFinalIterOnly no;

momentumPredictor yes;

transonic no;

residualControl

{

p 1e-2;

U 1e-3;

"(k|epsilon|omega)" 1e-3;

}

pRefCell 0;

pRefPoint (0 0 0);

pRefValue 0;

optimises your technology
240

Linear system solvers (25/35)

Description for each parameter:
• nOuterCorrectors – number of iterations that should be used for

the external loop of the algorithm (not to be confused with "outer loop
iteration" we've been referring to for the time step).

• nCorrectors – number of iterations that should be used for the
internal loop of the algorithm.

• nNonOrthogonalCorrectors – number of iterations for attempting
to correct the effect that non-orthogonal cells have on the solution of
the problem. Rule of thumb:

• 0 for a fully orthogonal mesh;
• 20 iterations for the most non-orthogonal meshes;
• 1-3 iterations if there are a few non-orthogonal cells.

optimises your technology
241

Linear system solvers (26/35)

• turbOnFinalIterOnly – this flag allows us to postpone the
calculation of the turbulence fields to the last iteration.

• momentumPredictor – Not all solvers use this parameter. Those that
do support this parameter, will not solve the momentum equation (U) if
this parameter is set to “no”.

• transonic – Only solvers that have implementations for sonic flow
will support this flag.

• residualControl - This is a named block gives the ability to add an
additional stopping criteria for the Initial Residual of each one of the
listed equations.

optimises your technology
242

Linear system solvers (27/35)

Side note
The following three parameters fall in a new topic: having a location in the
domain with a fixed reference pressure value.

This is necessary whenever all of pressure boundary conditions do not
have a fixed value, i.e. if they are all defined as zero gradient or a similar
boundary condition.

For such a situation, we must avoid having an incomplete definition of the
pressure equation, therefore we can rely on the following parameters for
defining a specific location in the mesh that has a fixed and pre-defined
value of pressure.

optimises your technology
243

Linear system solvers (28/35)

• pRefCell or pRefPoint - For selecting a location in the mesh where
the cell centre is used for pressure reference. Keep in mind that:

• pRefCell refers to the cell ID on the mesh.

• pRefPoint ensures us that the provided position is used for
selecting the cell.

• Note: pRefCell takes precedence over pRefPoint.

• pRefValue - This is the pressure value, which should be defined with
the same units as the pressure fields.

optimises your technology
244

Linear system solvers (29/35)

Almost complete example for SIMPLE:

SIMPLE

{

nNonOrthogonalCorrectors 0;

momentumPredictor yes;

transonic no;

residualControl

{

p 1e-2;

U 1e-3;

"(k|epsilon|omega)" 1e-3;

}

//pRefCell 0;

pRefPoint (0 0 0);

pRefValue 0;

}

Depends on the solver

optimises your technology
245

Linear system solvers (30/35)

Almost complete example for PISO:

PISO

{

nCorrectors 2;

nNonOrthogonalCorrectors 0;

momentumPredictor yes;

pRefCell 0;

pRefPoint (0 0 0);

pRefValue 0;

}

Depends on the solver

optimises your technology
246

Linear system solvers (31/35)

Almost complete example for PIMPLE:
PIMPLE

{

nOuterCorrectors 1;

nCorrectors 2;

nNonOrthogonalCorrectors 0;

turbOnFinalIterOnly no;

momentumPredictor yes;

transonic no;

residualControl

{

p 1e-2;

U 1e-3;

"(k|epsilon|omega)" 1e-3;

}

//pRefCell 0;

pRefPoint (0 0 0);

pRefValue 0;

}

Depends on the solver

optimises your technology
247

Linear system solvers (32/35)

Relaxation factors

Technically, OpenFOAM uses under-relaxation factors, because the values
are between 0.0 and 1.0.

These help the outer iterative convergence process, making it more robust
while simultaneously increasing the likelihood that we can reach a
numerical solution for our problem. A poor choice of values can delay and
even prevent convergence.

This is further explained in the OpenFOAM User Guide, subsection “4.5.2
Solution under-relaxation”.

optimises your technology
248

Linear system solvers (33/35)

1. If the value 0.0 is given, then the solution is kept unchanged between
each outer iteration.

2. If 1.0 is given, then the under-relaxation does not take place at all.

3. As we reduce the factor from 1.0 towards 0.0, we increase the impact
of the under-relaxation. Examples:

a) 0.9 – 90% of current solution of outer iteration is preserved and
10% previous outer iteration.

b) 0.1 – the current solution has a very small impact in the final
solution after this relaxation step, making the flow results to evolve
slower with every outer iteration.

optimises your technology
249

Linear system solvers (34/35)

Relaxation factors: transient vs steady-state

• In most cases, the relaxation factors for transient simulations are either
simply set to 1.0 or not at all.

• This is because PISO and PIMPLE algorithms perform time accurate
simulations, where the time step essentially does what the relaxation
factor is used for in steady-state simulations.

• Nonetheless, PIMPLE is a hybrid algorithm, therefore, it can also rely on
the relaxation factors for the SIMPLE loop within the PIMPLE algorithm.
Therefore, those relaxation factors are still applicable.

optimises your technology
250

Linear system solvers (35/35)

From our example case it, doesn’t
need much for interFoam
(PIMPLE):

relaxationFactors

{

fields

{

}

equations

{

".*" 1;

}

}

When compared to the tutorial
“incompressible/
simpleFoam/motorBike”:

relaxationFactors

{

fields

{

p 0.3;

}

equations

{

U 0.7;

k 0.7;

omega 0.7;

}

}

optimises your technology
251

Parallel runs (1/9)

We will address the following topics:

1. Domain decomposition

2. Domain balancing

3. Running in parallel

4. Domain reconstruction

optimises your technology
252

Parallel runs (2/9)

Domain decomposition (1/2)

Application: decomposePar

Dictionary: system/decomposeParDict

Relevant parameters:

• numberOfSubdomains is the number for sub-domains, i.e. how many
processors for running in parallel.

• method is for choosing the algorithm for decomposing the domain. The
easiest to use is the scotch option.

• scotchCoeffs is the block relative to the method scotch, which
doesn’t even need be present, since its internal parameters are for
advanced users.

optimises your technology
253

Parallel runs (3/9)

Domain decomposition (2/2)

Example of “system/decomposeParDict”:

method scotch;

scotchCoeffs

{

//writeGraph true;

//strategy "b";

}

method hierarchical;

hierarchicalCoeffs

{

n (1 2 1);

delta 0.001;

order xyz;

}

Example uses:

decomposePar

decomposePar –help

decomposePar –force

decomposePar -cellDist

decomposePar -noZero -fields -time 10

numberOfSubdomains 4;

method ???;

???Coeffs

{

}

OR

optimises your technology
254

Parallel runs (4/9)

Domain balancing

There are essentially two types of domain balancing:

1. Complete sub-domain redistribution, by using redistributePar,
which can help balance the number of cells per processor.

• Requires “system/decomposeParDict”.

• Can run in parallel.

2. Reordering the connections between cells, by using renumberMesh,
which will improve the configuration of the equations in matrix form,
for an optimum memory access.

• Can run in parallel.

optimises your technology
255

Parallel runs (5/9)

Running in parallel (1/4)

The common denominator is that the “-parallel” option must be used.
For example, if we run this command:

simpleFoam -help

We will see this line:

-parallel run in parallel

Therefore, for running in parallel, the simplest command would be:

mpirun -np 2 simpleFoam -parallel

where the “-np” means that the number on the right is the number of
processors to be used, i.e. 2.

optimises your technology
256

Parallel runs (6/9)

Running in parallel (2/4)

The use of mpirun is not a standard on all platforms, e.g. clusters can use
dedicated job schedulers and use dedicated scripts.

OpenFOAM has another two ways for running in parallel:

• foamJob is a script that comes in handy for running any utility and it
has the ability to either run in serial or in parallel.

• runParallel is a function-script that is accessible only when we
source the script RunFunctions. This is why this function is only seen
inside the Allrun scripts that are present in OpenFOAM's tutorials.

optimises your technology
257

Parallel runs (7/9)

Running in parallel (3/4) – Examples for foamJob:

Run in parallel as a background job:

foamJob –p simpleFoam

Run in parallel and show on-screen the output:

foamJob -p -s simpleFoam

For more details:

foamJob -help

Note: Application output is saved into the file named “log”.

optimises your technology
258

Parallel runs (8/9)

Running in parallel (4/4) – Details for runParallel:

Will only work once this command is used (or similar) :

source $WM_PROJECT_DIR/bin/tools/RunFunctions

commonly found in the Allrun scripts.

Usage structure:

runParallel app_name number_of_cores app_arguments

Example:

runParallel snappyHexMesh 4 -overwrite

optimises your technology
259

Parallel runs (9/9)

Domain reconstruction

As mentioned before, there are two types of domain reconstruction:

1. When the mesh was generated in parallel, we need to reconstruct it
with reconstructParMesh.

2. When the mesh is the same before and after
decomposing/reconstructing, then reconstructPar should be used
for reconstructing the time snapshots.

Both can only be executed in serial mode (not in parallel).

More details with the “-help” option, e.g.:

reconstructPar -help

optimises your technology

Thank you!

Any questions?

260

optimises your technology

Virtual Tracer Tests:
Coupling CFD and
CREng to Simulate
WRRFs Unit Processes
OpenFOAM advanced topics

nel s on.m a r q ue s @ fs dy n a mi c s .p t ; bruno.s a nto s @ fs dy n a m i c s .p t

1st September 2019

mailto:nelson.marques@fsdynamics.pt
mailto:bruno.santos@fsdynamics.pt

optimises your technology

1. Power User: Coding is a must

2. The case for a GUI

3. Where next for training and services?

4. Large cases

5. Community involvement

262

Section Contents

optimises your technology
263

Power user: Coding is a must (1/2)

When we visit the OpenFOAM User Guide page, the second phase states:

OpenFOAM is a collection of approximately 250 applications built upon a
collection of over 100 software libraries (modules). Each application performs a
specific task within a CFD workflow.

This means that it does not guaranteed that it’s able to do everything you need right
out-of-the-box.

It does however provide:

• The means for creating one’s own solvers and libraries

• Given its open source nature, the people in the community may have already
done what we need!

https://cfd.direct/openfoam/user-guide/

optimises your technology
264

Power user: Coding is a must (2/2)

Overview of what you can do and learn:

• OpenFOAM User Guide and Programmer’s Guide

• openfoamwiki.net/index.php/OpenFOAM_guide

• Learn C++:

• Book: Thinking in C++

• Tutorial: www.cplusplus.com/doc/tutorial/

• Study the source code (what matters to you)

• openfoam.org/docs/cpp/

• Research the forums:

• www.cfd-online.com/Forums/openfoam/

http://openfoamwiki.net/index.php/OpenFOAM_guide
http://www.cplusplus.com/doc/tutorial/
http://openfoam.org/docs/cpp/
http://www.cfd-online.com/Forums/openfoam/

optimises your technology
265

The case for a GUI (1/2)

Why doesn’t OpenFOAM have a GUI?

It did, was named FoamX and it was reported to be akin to “keyhole surgery”[1] – last
version was in OpenFOAM 1.4.

Depending on your workflow, a GUI can end up just getting in the way, since editing
text files directly can be quicker and easier to do, as well as adding some automation
to the process.

Several GUIs do already exist, which are listed here:

• openfoamwiki.net/index.php/GUI

[1] openfoamwiki.net/index.php/Main_UserGuideAddendum#Appendix_A:_The_FoamX_case_manager

http://openfoamwiki.net/index.php/GUI
http://openfoamwiki.net/index.php/Main_UserGuideAddendum#Appendix_A:_The_FoamX_case_manager

optimises your technology
266

The case for a GUI (2/2)

Pointing out a few from the list:

• CastNet by DHCAE

• www.dhcae-tools.com/CastNet.html

• HELYX by ENGYS

• engys.com/products/helix

• HELYX-OS (open source)

• engys.com/products/helyx-os

• blueCFD-AIR (yes, we have one!)

• bluecfd.com/AIR

http://www.dhcae-tools.com/CastNet.html
http://engys.com/products/helyx
http://engys.com/products/helyx-os
bluecfd.com/AIR

optimises your technology
267

Where next for training and services?

• OpenCFD (ESI Group) – official support providers

• CFD Direct (original developer Henry Weller, circa 1989)

• Wikki (early developer Hrvoje Jasak, circa 1993)

• Chalmers Professional Education

• Håkan Nilsson's PhD course in CFD with OpenSource software

Complete lists:

• openfoamwiki.net/index.php/Main_Courses

• openfoamwiki.net/index.php/Template:Frontpage_Links

http://openfoamwiki.net/index.php/Main_Courses
http://openfoamwiki.net/index.php/Template:Frontpage_Links

optimises your technology
268

Large cases

OpenFOAM on the cloud:

• Rescale: www.rescale.com

• Gompute: www.gompute.com

• SimScale: simscale.com

• SabalCore: www.sabalcore.com

• UberCloud: www.theubercloud.com

For the DIY cloud crowd:

• Amazon EC2: aws.amazon.com/ec2→ CFDDFC Command Line Interface

• Google Cloud: cloud.google.com

• Microsoft Azure: azure.microsoft.com

http://www.rescale.com/
http://www.gompute.com/
https://simscale.com/
http://www.sabalcore.com/
http://www.theubercloud.com/
http://aws.amazon.com/ec2/
https://cfd.direct/cloud/cfddfc-command-line-interface/
https://cloud.google.com/
http://azure.microsoft.com/

optimises your technology
269

Community involvement

• Forums:

• www.cfd-online.com/Forums/openfoam/

• Wikis:

• openfoamwiki.net

• wiki.openfoam.com

• Contributions:

• openfoamwiki.net/index.php/Extend-bazaar

• openfoamwiki.net/index.php/Main_ContribOther

• Bug reports:

• bugs.openfoam.org

• develop.openfoam.com

• sf.net/p/openfoam-extend/ticketsfoamextendrelease/

http://www.cfd-online.com/Forums/openfoam/
http://openfoamwiki.net/
http://wiki.openfoam.com/
http://openfoamwiki.net/index.php/Extend-bazaar
http://openfoamwiki.net/index.php/Main_ContribOther
https://bugs.openfoam.org/
https://develop.openfoam.com/
sf.net/p/openfoam-extend/ticketsfoamextendrelease/

optimises your technology

Thank you!

Any questions?

270

